cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A005796 Degrees of fundamental invariants of Weyl group W(E_8).

Original entry on oeis.org

2, 8, 12, 14, 18, 20, 24, 30
Offset: 1

Views

Author

Keywords

Comments

a(n) - 1 is the n-th number < 30 that is relatively prime to 30. [Jonathan Sondow, Apr 16 2009]

Crossrefs

Formula

a(n) = Prime(n+2) + 1, for n = 2, 3, ..., 8. [Jonathan Sondow, Apr 16 2009]

A008583 Molien series for Weyl group E_7.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 6, 8, 10, 14, 18, 22, 29, 36, 44, 55, 67, 80, 98, 117, 138, 165, 194, 226, 266, 309, 356, 413, 475, 542, 622, 708, 802, 911, 1029, 1157, 1304, 1462, 1633, 1827, 2036, 2261, 2514, 2785
Offset: 0

Views

Author

Keywords

Comments

The relevant generating function 1/((1-z^2)*(1-z^6)*(1-z^8)*(1-z^10)*(1-z^12)*(1-z^14)*(1-z^18)) is reduced with z^2=x below to indicate that the intermediate zeros are not stored in this sequence.

References

  • H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, Ergebnisse der Mathematik und Ihrer Grenzgebiete, New Series, no. 14. Springer Verlag, 1957, Table 10.
  • L. Smith, Polynomial Invariants of Finite Groups, Peters, 1995, p. 199 (No. 36).

Crossrefs

Cf. A005795.

Programs

  • Magma
    MolienSeries(CoxeterGroup("E7")); // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006
    
  • Maple
    A008583_list := proc(n) local G,j;
    G:= series(1/((1-x)*(1-x^3)*(1-x^4)*(1-x^5)*(1-x^6)*(1-x^7)*(1-x^9)),x,n+1);
    [seq(coeff(G,x,j),j=0..n)];
    end proc; # Robert Israel, Mar 26 2012
  • Mathematica
    CoefficientList[Series[1/((1-x)(1-x^3)(1-x^4)(1-x^5)(1-x^6)(1-x^7)(1-x^9)),{x,0,50}],x] (* Harvey P. Dale, Mar 04 2013 *)
  • PARI
    A008583_list(n)=Vec(1/((1-x)*(1-x^3)*(1-x^4)*(1-x^5)*(1-x^6)*(1-x^7)*(1-x^9))+O(x^n))  /* returns n terms [a(0),...,a(n-1)] */ \\ M. F. Hasler, Mar 26 2012
    
  • Sage
    def A008583_list(n) :
        R. = PowerSeriesRing(ZZ)
        G = 1/((1-t)*(1-t^3)*(1-t^4)*(1-t^5)*(1-t^6)*(1-t^7)*(1-t^9) + O(t^n))
        return G.padded_list()  # Peter Luschny, Mar 27 2012

Formula

G.f.: 1/((1-x)*(1-x^3)*(1-x^4)*(1-x^5)*(1-x^6)*(1-x^7)*(1-x^9)).

A273867 Degrees of fundamental invariants of Weyl group W(E_6).

Original entry on oeis.org

2, 5, 6, 8, 9, 12
Offset: 1

Views

Author

Tom Edgar, Jun 01 2016

Keywords

Crossrefs

Showing 1-3 of 3 results.