cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005824 a(n) = 5*a(n-2) - 2*a(n-4), with initial terms 0,1,1,3.

Original entry on oeis.org

0, 1, 1, 3, 5, 13, 23, 59, 105, 269, 479, 1227, 2185, 5597, 9967, 25531, 45465, 116461, 207391, 531243, 946025, 2423293, 4315343, 11053979, 19684665, 50423309, 89792639, 230008587, 409593865, 1049196317, 1868384047, 4785964411, 8522732505, 21831429421, 38876894431
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A079162.

Programs

  • Mathematica
    a[0] = 0; a[1] = 1; a[n_] := a[n] = If[ EvenQ[n], a[n - 1] + 2a[n - 2], 2a[n - 1] + a[n - 2]]; Table[a[n], {n, 0, 31}]
    LinearRecurrence[{0,5,0,-2},{0,1,1,3},40] (* Harvey P. Dale, Jul 09 2015 *)

Formula

Also a(n) = a(n-1) + 2a(n-2) if n is even, else a(n) = 2a(n-1) + a(n-2).
g.f.: -x*(2*x+1)*(x-1)/(1-5*x^2+2*x^4). Simon Plouffe in his 1992 dissertation.
a(2n+1) = A052984(n). [Index corrected by R. J. Mathar, Apr 01 2009]
a(2n) = A107839(n-1). [R. J. Mathar, Apr 01 2009]
a(n) = A109165(n-1)-A109165(n-2). - R. J. Mathar, Jan 13 2025

Extensions

Extended by Robert G. Wilson v, Dec 29 2002