A005847 Imaginary quadratic fields with class number 2 (a finite sequence).
5, 6, 10, 13, 15, 22, 35, 37, 51, 58, 91, 115, 123, 187, 235, 267, 403, 427
Offset: 1
References
- J. M. Masley, Where are the number fields with small class number?, pp. 221-242 of "Number Theory, Carbondale 1979", Lect. Notes Math. 751 (1982).
- Paulo Ribenboim, The Book of Prime Number Records. Springer-Verlag, NY, 2nd ed., 1989, p. 142.
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 143-144.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Steven Arno, M. L. Robinson, and Ferrell S. Wheeler, Imaginary quadratic fields with small odd class number, Acta Arith. 83 (1998), pp. 295-330.
- David Masser, Alan Baker, arXiv:2010.10256 [math.HO], 2020. See p. 24.
- Keith Matthews, Tables of imaginary quadratic fields with small class numbers.
- Index entries for sequences related to quadratic fields.
Programs
-
Mathematica
Select[Range[200], MoebiusMu[#] != 0 && NumberFieldClassNumber[Sqrt[-#]] == 2 &] (* Alonso del Arte, May 28 2015 *)
-
PARI
{ bnd = 10000; S = vector(10,X,[]); for (i = 1, bnd, if (issquarefree(i), n = qfbclassno(if(i%4==3,-i,-4*i)); if (n<11, S[n] = concat(S[n],i), ), )); } \\ Robert Harley (Robert.Harley(AT)inria.fr)
Comments