cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A003173 Heegner numbers: imaginary quadratic fields with unique factorization (or class number 1).

Original entry on oeis.org

1, 2, 3, 7, 11, 19, 43, 67, 163
Offset: 1

Views

Author

Keywords

Comments

Could also be called Gauss numbers, since he discovered them. Heegner proved list is complete. - Artur Jasinski, Mar 21 2003
Numbers n such that Q(sqrt(-n)) has unique factorization into primes.
These are the squarefree values of n for which if some positive integer N can be written in the form (a/2)^2+n*(b/2)^2 for integers a and b, then every prime factor P of N which occurs to an odd power can also be written in the form (c/2)^2+n*(d/2)^2 for integers c and d. - V. Raman, Sep 17 2012, May 01 2013
Cases n = 1 and n = 2 correspond to the rings Z[i] (Gaussian integers) and Z[sqrt(-2)] = numbers of the form a + b*sqrt(-2), where a and b are integers. Other cases, satisfying a(n) == 3 (mod 4), correspond to the rings of numbers of the form (a/2) + (b/2)*sqrt(-a(n)), for integers a and b of the same parity. All these rings admit unique factorization. - V. Raman, Sep 17 2012, corrected by Eric M. Schmidt, Feb 17 2013
The Heegner numbers greater than 3 can also be found using the Kronecker symbol, as follows: A number k > 3 is a Heegner number if and only if s = Sum_{j = 1..k} j * (j|k) is prime, which happens to be negative, where (x|y) is the Kronecker symbol. Also note for these results s = -k. But if s = -k is used as the selection condition (instead of primality), then the cubes of {7, 11, 19, 43, 67, 163} are also selected, followed by these same numbers to 9th power (and presumably followed by the 27th or 81st power). - Richard R. Forberg, Jul 18 2016
Theorem: The ring of integers of the imaginary quadratic field Q(sqrt(-n)) is Euclidean iff n = 1, 2, 3, 7 and 11. (Otherwise, the ring of integers of the imaginary quadratic field Q(sqrt(-n)) is principal iff n is a term of this sequence) [Link Stark-Heegner theorem]. - Bernard Schott, Feb 07 2020
Named after the German high school teacher and radio engineer Kurt Heegner (1893-1965). - Amiram Eldar, Jun 15 2021

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, p. 224.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, p. 213.
  • Wilfred W. J. Hulsbergen, Conjectures in Arithmetic Algebraic Geometry, Vieweg, 1994, p. 8.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 143.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Harold M. Stark, An Introduction to Number Theory. Markham, Chicago, 1970, p. 295.

Crossrefs

Cf. A003174, A005847 (for class number 2), A014602 (for discriminants of these fields), A048981, A263465.

Programs

  • Mathematica
    Union[ Select[ -NumberFieldDiscriminant[ Sqrt[-#]]& /@ Range[200], NumberFieldClassNumber[ Sqrt[-#]] == 1 & ] /. {4 -> 1, 8 -> 2}] (* Jean-François Alcover, Jan 04 2012 *)
    heegnerNums = {}; Do[s = Sum[j * KroneckerSymbol[j, k], {j, 1, k}]; If[PrimeQ[s], AppendTo[heegnerNums, {s, k}]], {k, 1, 10000}]; heegnerNums (* Richard R. Forberg, Jul 18 2016 *)
  • PARI
    select(n->qfbclassno(-n*if(n%4==3,1,4))==1, vector(200,i,i)) \\ Charles R Greathouse IV, Nov 20 2012

Formula

a(n) = A263465(n) = -A048981(6-n) for n <= 5. - Jonathan Sondow, May 28 2016

A006203 Discriminants of imaginary quadratic fields with class number 3 (negated).

Original entry on oeis.org

23, 31, 59, 83, 107, 139, 211, 283, 307, 331, 379, 499, 547, 643, 883, 907
Offset: 1

Views

Author

Keywords

Comments

Also n such that Q(sqrt(-n)) has class number 3. Lubelski in 1936 proved that 907 is maximal term of this sequence. - Artur Jasinski, Oct 07 2011

References

  • H. Cohen, Course in Computational Alg. No. Theory, Springer, 1993, p. 514.
  • J. M. Masley, Where are the number fields with small class number?, pp. 221-242 of Number Theory Carbondale 1979, Lect. Notes Math. 751 (1982).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. also A003173, A005847, ...
Cf. A191410.

Programs

  • Mathematica
    Union[ (-NumberFieldDiscriminant[ Sqrt[-#]] & ) /@ Select[ Range[1000], NumberFieldClassNumber[ Sqrt[-#]] == 3 & ]] (* Jean-François Alcover, Jan 04 2012 *)
  • PARI
    ok(n)={isfundamental(-n) && quadclassunit(-n).no == 3} \\ Andrew Howroyd, Jul 20 2018
    
  • Sage
    [n for n in (1..1000) if is_fundamental_discriminant(-n) and QuadraticField(-n, 'a').class_number()==3] # G. C. Greubel, Mar 01 2019

A046085 Numbers n such that Q(sqrt(-n)) has class number 4.

Original entry on oeis.org

14, 17, 21, 30, 33, 34, 39, 42, 46, 55, 57, 70, 73, 78, 82, 85, 93, 97, 102, 130, 133, 142, 155, 177, 190, 193, 195, 203, 219, 253, 259, 291, 323, 355, 435, 483, 555, 595, 627, 667, 715, 723, 763, 795, 955, 1003, 1027, 1227, 1243, 1387, 1411, 1435, 1507, 1555
Offset: 1

Views

Author

N. J. A. Sloane, Jun 16 2000

Keywords

Comments

Contains 54 numbers [Arno, Theorem 7], ..., 1387, 1411, 1435, 1507 and 1555. [R. J. Mathar, May 01 2010]

Crossrefs

See A003173, A005847, A006203, A046085, A046002, A055109, A046004, A055110, A046006, A055111 for class numbers 1 through 10.

Programs

A055109 Numbers k such that Q(sqrt(-k)) has class number 6.

Original entry on oeis.org

26, 29, 38, 53, 61, 87, 106, 109, 118, 157, 202, 214, 247, 262, 277, 298, 339, 358, 397, 411, 451, 515, 707, 771, 835, 843, 1059, 1099, 1147, 1203, 1219, 1267, 1315, 1347, 1363, 1563, 1603, 1843, 1915, 1963, 2227, 2283, 2443, 2515, 2563, 2787
Offset: 1

Views

Author

N. J. A. Sloane, Jun 16 2000

Keywords

Crossrefs

See A003173, A005847, A006203, A046085, A046002, A055109, A046004, A055110, A046006, A055111 for class numbers 1 through 10.

Programs

  • Mathematica
    Select[Range[10000], MoebiusMu[#] != 0 && NumberFieldClassNumber[Sqrt[-#]] == 6 &] (* Jinyuan Wang, Mar 08 2020 *)
  • PARI
    \\  See A005847.

A055110 Numbers k such that Q(sqrt(-k)) has class number 8.

Original entry on oeis.org

41, 62, 65, 66, 69, 77, 94, 95, 105, 111, 113, 114, 137, 138, 141, 145, 154, 158, 165, 178, 183, 205, 210, 213, 217, 226, 238, 258, 265, 273, 282, 295, 299, 301, 310, 313, 322, 330, 337, 345, 357, 371, 382, 385, 395, 418, 438, 442, 445, 457
Offset: 1

Views

Author

N. J. A. Sloane, Jun 16 2000

Keywords

Crossrefs

See A003173, A005847, A006203, A046085, A046002, A055109, A046004, A055110, A046006, A055111 for class numbers 1 through 10.

Programs

  • Mathematica
    Select[Range[10000], MoebiusMu[#] != 0 && NumberFieldClassNumber[Sqrt[-#]] == 8 &] (* Jinyuan Wang, Mar 08 2020 *)
  • PARI
    \\ See A005847.

A055111 Numbers k such that Q(sqrt(-k)) has class number 10.

Original entry on oeis.org

74, 86, 119, 122, 143, 159, 166, 181, 197, 218, 229, 303, 317, 319, 346, 373, 394, 415, 421, 422, 538, 541, 611, 613, 635, 694, 699, 709, 757, 779, 803, 851, 853, 877, 923, 982, 1093, 1115, 1213, 1318, 1643, 1707, 1779, 1819, 1835, 1891, 1923
Offset: 1

Views

Author

N. J. A. Sloane, Jun 16 2000

Keywords

Crossrefs

See A003173, A005847, A006203, A046085, A046002, A055109, A046004, A055110, A046006, A055111 for class numbers 1 through 10.

Programs

  • Mathematica
    Select[Range[10000], MoebiusMu[#] != 0 && NumberFieldClassNumber[Sqrt[-#]] == 10 &] (* Jinyuan Wang, Mar 08 2020 *)
  • PARI
    \\ See A005847.

A191411 Class number, k, of n; i.e., imaginary quadratic fields negated Q(sqrt(-n))=k, or 0 if n is not squarefree (A005117).

Original entry on oeis.org

1, 1, 1, 0, 2, 2, 1, 0, 0, 2, 1, 0, 2, 4, 2, 0, 4, 0, 1, 0, 4, 2, 3, 0, 0, 6, 0, 0, 6, 4, 3, 0, 4, 4, 2, 0, 2, 6, 4, 0, 8, 4, 1, 0, 0, 4, 5, 0, 0, 0, 2, 0, 6, 0, 4, 0, 4, 2, 3, 0, 6, 8, 0, 0, 8, 8, 1, 0, 8, 4, 7, 0, 4, 10, 0, 0, 8, 4, 5, 0, 0, 4, 3, 0, 4, 10, 6, 0, 12, 0, 2, 0, 4, 8, 8, 0, 4, 0, 0, 0, 14, 4, 5, 0, 8
Offset: 1

Views

Author

Robert G. Wilson v, Jun 01 2011

Keywords

Crossrefs

a(n)= 0: A013929; a(n)= 1: A003173; a(n)= 2: A005847; a(n)= 3: A006203; a(n)= 4: A046085; a(n)= 5: A046002; a(n)= 6: A055109; a(n)= 7: A046004; a(n)= 8: A055110; a(n)= 9: A046006; a(n)=10: A055111; a(n)=11: A046008; a(n)=12: n/a;
a(n)=13: A046010; a(n)=14: n/a; a(n)=15: A046012; a(n)=16: n/a; a(n)=17: A046014; a(n)=18: n/a; a(n)=19: A046016;
a(n)=20: n/a; a(n)=21: A046018; a(n)=22: n/a;
a(n)=23: A046020; a(n)=24: n/a; a(n)=25: A056987; etc.
Cf. A000924 (without the zeros).

Programs

  • Mathematica
    f[n_] := If[! SquareFreeQ@ n, 0, NumberFieldClassNumber@Sqrt@ -n]; Array[f, 105]
  • PARI
    a(n) = if (! issquarefree(n), 0, qfbclassno(-n*if((-n)%4>1, 4, 1))); \\ Michel Marcus, Jul 08 2015

A236307 Discriminants d such that the ring of algebraic integers of Q(sqrt(-d)) is not a unique factorization domain.

Original entry on oeis.org

5, 6, 10, 13, 14, 15, 17, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 46, 47, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 69, 70, 71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 102, 103, 105, 106, 107, 109, 110, 111, 113, 114, 115, 118, 119, 122
Offset: 1

Views

Author

Alonso del Arte, Apr 21 2014

Keywords

Comments

Stewart & Tall (2002) show that none of the first thirteen terms listed here correspond to an imaginary quadratic ring with unique factorization by giving one example of an integer having two distinct factorizations for each ring.
This sequence consists of the squarefree numbers (A005117) that are not Heegner numbers (A003173).

Examples

			10 is in the sequence because 14 = 2 * 7 = (2 - sqrt(-10))(2 + sqrt(-10)), which are two distinct factorizations of 14 in Z[sqrt(-10)].
13 is in the sequence because 14 = 2 * 7 = (1 - sqrt(-13))(1 + sqrt(-13)), which are two distinct factorizations of 14 in Z[sqrt(-13)].
14 is in the sequence because 15 = 3 * 5 = (1 - sqrt(-14))(1 + sqrt(-14)), which are two distinct factorizations of 15 in Z[sqrt(-14)].
(Many more examples can be found for each ring; these three are from the thirteen given by Stewart & Tall (2002)).
And when -d = 1 mod 4 other than -3, -7, -11, -19, -43, -67 or -163, we can often use (d + 1)/4 = (1/2 - sqrt(-d)/2)(1/2 + sqrt(-d)/2) as an example, such as 4 = 2 * 2 = (1/2 - sqrt(-15)/2)(1/2 + sqrt(-15)/2) in O_(Q(sqrt(-15))).
		

References

  • Ian Stewart & David Tall, Algebraic Number Theory and Fermat's Last Theorem, 3rd Ed. Natick, Massachusetts: A. K. Peters (2002): p. 83, Theorem 4.10.

Crossrefs

Programs

  • Mathematica
    Select[Range[100], SquareFreeQ[#] && NumberFieldClassNumber[Sqrt[-#]] > 1 &]

Formula

a(n) = A005117(n + 9) for n > 91.

Extensions

Name corrected after an e-mail from Michel Lagneau, Dec 25 2018
Showing 1-8 of 8 results.