cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 51 results. Next

A046002 Discriminants of imaginary quadratic fields with class number 5 (negated).

Original entry on oeis.org

47, 79, 103, 127, 131, 179, 227, 347, 443, 523, 571, 619, 683, 691, 739, 787, 947, 1051, 1123, 1723, 1747, 1867, 2203, 2347, 2683
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Union[(-NumberFieldDiscriminant[Sqrt[-#]] &) /@ Select[Range[2700], NumberFieldClassNumber[Sqrt[-#]] == 5 &]] (* Jean-François Alcover, Jun 27 2012 *)
  • PARI
    select(n->qfbclassno(-n)==5,vector(670,n,4*n+3)) \\ Charles R Greathouse IV, Apr 25 2013
    
  • Sage
    [n for n in (1..3000) if is_fundamental_discriminant(-n) and QuadraticField(-n, 'a').class_number()==5] # G. C. Greubel, Mar 01 2019

A014603 Discriminants of imaginary quadratic fields with class number 2 (negated).

Original entry on oeis.org

15, 20, 24, 35, 40, 51, 52, 88, 91, 115, 123, 148, 187, 232, 235, 267, 403, 427
Offset: 1

Views

Author

Eric Rains (rains(AT)caltech.edu)

Keywords

Comments

Includes only fundamental discriminants. The list of non-fundamental imaginary quadratic discriminants with class number 2 (negated) is 32, 36, 48, 60, 64, 72, 75, 99, 100, 112, 147. - Andrew V. Sutherland, Apr 08 2010

References

  • H. Cohen, Course in Computational Alg. No. Theory, Springer, 1993, p. 229.

Crossrefs

Programs

  • Mathematica
    Union[ (-NumberFieldDiscriminant[ Sqrt[-#]] &) /@ Select[ Range[500], NumberFieldClassNumber[ Sqrt[-#]] == 2 &]] (* Jean-François Alcover, Jan 04 2012 *)
  • PARI
    ok(n)={isfundamental(-n) && quadclassunit(-n).no == 2} \\ Andrew Howroyd, Jul 20 2018
    
  • Sage
    [n for n in (1..500) if is_fundamental_discriminant(-n) and QuadraticField(-n, 'a').class_number()==2] # G. C. Greubel, Mar 01 2019

Extensions

Offset corrected by Jianing Song, Aug 29 2018

A046020 Discriminants of imaginary quadratic fields with class number 23 (negated).

Original entry on oeis.org

647, 1039, 1103, 1279, 1447, 1471, 1811, 1979, 2411, 2671, 3491, 3539, 3847, 3923, 4211, 4783, 5387, 5507, 5531, 6563, 6659, 6703, 7043, 9587, 9931, 10867, 10883, 12203, 12739, 13099, 13187, 15307, 15451, 16267, 17203, 17851, 18379, 20323
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Reap[ Do[ If[ NumberFieldClassNumber[ Sqrt[-n] ] == 23, d = -NumberFieldDiscriminant[ Sqrt[-n] ]; Print[d]; Sow[d]], {n, 1, 21000}]][[2, 1]] // Union (* Jean-François Alcover, Oct 22 2012 *)
  • PARI
    select(n->qfbclassno(-n)==23, vector(22696, n, 4*n+3)) \\ Charles R Greathouse IV, Apr 25 2013

Extensions

68 discriminants in this sequence (proved).

A046125 Number of negative fundamental discriminants having class number n.

Original entry on oeis.org

9, 18, 16, 54, 25, 51, 31, 131, 34, 87, 41, 206, 37, 95, 68, 322, 45, 150, 47, 350, 85, 139, 68, 511, 95, 190, 93, 457, 83, 255, 73, 708, 101, 219, 103, 668, 85, 237, 115, 912, 109, 339, 106, 691, 154, 268, 107, 1365, 132, 345, 159, 770, 114, 427, 163, 1205, 179, 291
Offset: 1

Views

Author

Keywords

Examples

			a(1) = 9 because the discriminants {-3,-4,-7,-8,-11,-19,-43,-67,-163} are the only ones with class number 1.
		

Crossrefs

Programs

  • Mathematica
    FundamentalDiscriminantQ[n_] := n != 1 && (Mod[n, 4] == 1 || ! Unequal[ Mod[n, 16], 8, 12]) && SquareFreeQ[n/2^IntegerExponent[n, 2]] (* via Eric E. Weisstein *);
    k = 1; t = Table[0, {125}]; While[k < 2000001, If[ FundamentalDiscriminantQ@ -k, a = NumberFieldClassNumber@ Sqrt@ -k; If[a < 126, t[[a]]++]]; k++]; t (* Robert G. Wilson v Jun 01 2011 *)
  • PARI
    lista(nn=10^7) = {my(NMAX=100, v = vector(NMAX), c); for (k=1, nn, if (isfundamental(-k), if ((c = qfbclassno(-k)) <= NMAX, v[c] ++););); v;} \\ Michel Marcus, Feb 17 2022

Formula

From Amiram Eldar, Apr 15 2025: (Start)
Formulas from Soundararajan (2007):
Sum_{k=1..n} a(k) = (3*zeta(2)/zeta(3)) * n^2 + O(n^2 * log(n)^(-1/2+eps)).
a(n) << n^2 * log(log(n))^4 / log(n). (End)

Extensions

Edited by Robert G. Wilson v, May 13 2003
Corrected and extended by Dean Hickerson, May 20 2003. The values were obtained by transcribing and combining data from Tables 1-3 of Buell's paper, which has information for all values of n up to 125.

A056987 Discriminants of imaginary quadratic fields with class number 25 (negated).

Original entry on oeis.org

479, 599, 1367, 2887, 3851, 4787, 5023, 5503, 5843, 7187, 7283, 7307, 7411, 8011, 8179, 9227, 9923, 10099, 11059, 11131, 11243, 11867, 12211, 12379, 12451, 12979, 14011, 14923, 15619, 17483, 18211, 19267, 19699, 19891, 20347, 21107, 21323
Offset: 1

Views

Author

Keywords

Comments

Sequence contains 95 members; largest is 93307.
The class group of Q[sqrt(-d)] is isomorphic to C_5 X C_5 for d = 12451 and 37363. For all other d in this sequence, the class group of Q[sqrt(-d)] is isomorphic to C_25. - Jianing Song, Dec 01 2019

Crossrefs

Programs

  • Mathematica
    Reap[ For[n = 1, n < 22000, n++, s = Sqrt[-n]; If[ NumberFieldClassNumber[s] == 25, d = -NumberFieldDiscriminant[s]; Print[d]; Sow[d]]]][[2, 1]] // Union (* Jean-François Alcover, Oct 05 2012 *)

A351664 Discriminants of imaginary quadratic fields with class number 26 (negated).

Original entry on oeis.org

551, 951, 1247, 1256, 1735, 1832, 2651, 2771, 2792, 2823, 2839, 2984, 3092, 3327, 3368, 3611, 3736, 3903, 3992, 4052, 4207, 4244, 4376, 4739, 5123, 5435, 5524, 5891, 6059, 6443, 6515, 6587, 6676, 6847, 6891, 6964, 7156, 8003, 8339, 8383, 8408, 8691, 8743
Offset: 1

Views

Author

Andy Huchala, Feb 16 2022

Keywords

Comments

Sequence contains 190 terms; largest is 103027.
The class group of Q[sqrt(-d)] is isomorphic to C_26 for all d in this sequence.

Crossrefs

Programs

  • Sage
    ls = [(QuadraticField(-n, 'a').discriminant(), QuadraticField(-n, 'a').class_number()) for n in (0..10000) if is_fundamental_discriminant(-n) and not is_square(n)];
    [-a[0] for a in ls if a[1] == 26]

A002148 Smallest prime p==3 (mod 8) such that Q(sqrt(-p)) has class number 2n+1.

Original entry on oeis.org

3, 59, 131, 251, 419, 659, 1019, 971, 1091, 2099, 1931, 1811, 3851, 3299, 2939, 3251, 4091, 4259, 8147, 5099, 9467, 6299, 6971, 8291, 8819, 14771, 22619, 9539, 13331, 18443, 11171, 16979, 12011, 13859, 16931, 17939, 28211, 19211, 24251, 20411
Offset: 0

Views

Author

Keywords

References

  • D. A. Buell, Binary Quadratic Forms. Springer-Verlag, NY, 1989, pp. 224-241.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002143 (class numbers), A002149, A003173, A006203.

Programs

  • Mathematica
    a=Table[0, {101}]; Do[If[PrimeQ[m], c=NumberFieldClassNumber[Sqrt[-m]]; If[c<102 && a[[c]]==0, a[[c]]=m]], {m, 3, 30000, 8}]; Table[a[[n]], {n, 1, 101, 2}]

Extensions

More terms from Robert G. Wilson v, Apr 17 2001
Edited by Dean Hickerson, Mar 17 2003

A191410 Class number, k, of n, i.e.; imaginary quadratic fields negated Q(sqrt(-n))=k, or 0 if n is not a fundamental discriminant (A003657).

Original entry on oeis.org

0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 2, 0, 0, 3, 2, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 2, 0, 0, 0, 4, 2, 0, 0, 1, 0, 0, 0, 5, 0, 0, 0, 2, 2, 0, 0, 4, 4, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 1, 4, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 3, 4, 0, 0, 6, 2, 0, 0, 2, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 5, 6, 0
Offset: 1

Views

Author

Robert G. Wilson v, Jun 01 2011

Keywords

Crossrefs

a(n)= 0: n/a The complement of A003657; a(n)= 1: A014602; a(n)= 2: A014603; a(n)= 3: A006203; a(n)= 4: A013658; a(n)= 5: A046002; a(n)= 6: A046003; a(n)= 7: A046004; a(n)= 8: A046005; a(n)= 9: A046006; a(n)=10: A046007; a(n)=11: A046008; a(n)=12: A046009; a(n)=13: A046010; a(n)=14: A046011; a(n)=15: A046012; a(n)=16: A046013; a(n)=17: A046014; a(n)=18: A046015; a(n)=19: A046016; a(n)=20: A123563; a(n)=21: A046018; a(n)=22: A171724; a(n)=23: A046020; a(n)=24: A048925; a(n)=25: A056987; etc.

Programs

  • Mathematica
    FundamentalDiscriminantQ[n_] := n != 1 && (Mod[n, 4] == 1 || !Unequal[ Mod[n, 16], 8, 12]) && SquareFreeQ[n/2^IntegerExponent[n, 2]] (* via Eric E. Weisstein *);
    f[n_] := If[ !FundamentalDiscriminantQ@ -n, 0, NumberFieldClassNumber@ Sqrt@ -n]; Array[f, 105]
  • PARI
    a(n)=if(isfundamental(-n),qfbclassno(-n),0) \\ Charles R Greathouse IV, Nov 20 2012

A005847 Imaginary quadratic fields with class number 2 (a finite sequence).

Original entry on oeis.org

5, 6, 10, 13, 15, 22, 35, 37, 51, 58, 91, 115, 123, 187, 235, 267, 403, 427
Offset: 1

Views

Author

Keywords

Comments

n such that Q(sqrt(-n)) has class number 2.
The PARI code lists the imaginary quadratic fields Q(sqrt(-d)) with small class number and produces A003173 (class number 1), A005847 (2), A006203 (3).

References

  • J. M. Masley, Where are the number fields with small class number?, pp. 221-242 of "Number Theory, Carbondale 1979", Lect. Notes Math. 751 (1982).
  • Paulo Ribenboim, The Book of Prime Number Records. Springer-Verlag, NY, 2nd ed., 1989, p. 142.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 143-144.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    Select[Range[200], MoebiusMu[#] != 0 && NumberFieldClassNumber[Sqrt[-#]] == 2 &] (* Alonso del Arte, May 28 2015 *)
  • PARI
    { bnd = 10000; S = vector(10,X,[]); for (i = 1, bnd, if (issquarefree(i), n = qfbclassno(if(i%4==3,-i,-4*i)); if (n<11, S[n] = concat(S[n],i), ), )); } \\ Robert Harley (Robert.Harley(AT)inria.fr)

A046004 Discriminants of imaginary quadratic fields with class number 7 (negated).

Original entry on oeis.org

71, 151, 223, 251, 463, 467, 487, 587, 811, 827, 859, 1163, 1171, 1483, 1523, 1627, 1787, 1987, 2011, 2083, 2179, 2251, 2467, 2707, 3019, 3067, 3187, 3907, 4603, 5107, 5923
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Union[(-NumberFieldDiscriminant[Sqrt[-#]] &) /@ Select[Range[6000], NumberFieldClassNumber[Sqrt[-#]] == 7 &]] (* Jean-François Alcover, Jun 27 2012 *)
  • PARI
    ok(n)={isfundamental(-n) && quadclassunit(-n).no == 7};
    for(n=1, 6000, if(ok(n)==1, print1(n, ", "))) \\ G. C. Greubel, Mar 01 2019
    
  • Sage
    [n for n in (1..6000) if is_fundamental_discriminant(-n) and QuadraticField(-n, 'a').class_number()==7] # G. C. Greubel, Mar 01 2019
Showing 1-10 of 51 results. Next