cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A006203 Discriminants of imaginary quadratic fields with class number 3 (negated).

Original entry on oeis.org

23, 31, 59, 83, 107, 139, 211, 283, 307, 331, 379, 499, 547, 643, 883, 907
Offset: 1

Views

Author

Keywords

Comments

Also n such that Q(sqrt(-n)) has class number 3. Lubelski in 1936 proved that 907 is maximal term of this sequence. - Artur Jasinski, Oct 07 2011

References

  • H. Cohen, Course in Computational Alg. No. Theory, Springer, 1993, p. 514.
  • J. M. Masley, Where are the number fields with small class number?, pp. 221-242 of Number Theory Carbondale 1979, Lect. Notes Math. 751 (1982).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. also A003173, A005847, ...
Cf. A191410.

Programs

  • Mathematica
    Union[ (-NumberFieldDiscriminant[ Sqrt[-#]] & ) /@ Select[ Range[1000], NumberFieldClassNumber[ Sqrt[-#]] == 3 & ]] (* Jean-François Alcover, Jan 04 2012 *)
  • PARI
    ok(n)={isfundamental(-n) && quadclassunit(-n).no == 3} \\ Andrew Howroyd, Jul 20 2018
    
  • Sage
    [n for n in (1..1000) if is_fundamental_discriminant(-n) and QuadraticField(-n, 'a').class_number()==3] # G. C. Greubel, Mar 01 2019

A046002 Discriminants of imaginary quadratic fields with class number 5 (negated).

Original entry on oeis.org

47, 79, 103, 127, 131, 179, 227, 347, 443, 523, 571, 619, 683, 691, 739, 787, 947, 1051, 1123, 1723, 1747, 1867, 2203, 2347, 2683
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Union[(-NumberFieldDiscriminant[Sqrt[-#]] &) /@ Select[Range[2700], NumberFieldClassNumber[Sqrt[-#]] == 5 &]] (* Jean-François Alcover, Jun 27 2012 *)
  • PARI
    select(n->qfbclassno(-n)==5,vector(670,n,4*n+3)) \\ Charles R Greathouse IV, Apr 25 2013
    
  • Sage
    [n for n in (1..3000) if is_fundamental_discriminant(-n) and QuadraticField(-n, 'a').class_number()==5] # G. C. Greubel, Mar 01 2019

A014603 Discriminants of imaginary quadratic fields with class number 2 (negated).

Original entry on oeis.org

15, 20, 24, 35, 40, 51, 52, 88, 91, 115, 123, 148, 187, 232, 235, 267, 403, 427
Offset: 1

Views

Author

Eric Rains (rains(AT)caltech.edu)

Keywords

Comments

Includes only fundamental discriminants. The list of non-fundamental imaginary quadratic discriminants with class number 2 (negated) is 32, 36, 48, 60, 64, 72, 75, 99, 100, 112, 147. - Andrew V. Sutherland, Apr 08 2010

References

  • H. Cohen, Course in Computational Alg. No. Theory, Springer, 1993, p. 229.

Crossrefs

Programs

  • Mathematica
    Union[ (-NumberFieldDiscriminant[ Sqrt[-#]] &) /@ Select[ Range[500], NumberFieldClassNumber[ Sqrt[-#]] == 2 &]] (* Jean-François Alcover, Jan 04 2012 *)
  • PARI
    ok(n)={isfundamental(-n) && quadclassunit(-n).no == 2} \\ Andrew Howroyd, Jul 20 2018
    
  • Sage
    [n for n in (1..500) if is_fundamental_discriminant(-n) and QuadraticField(-n, 'a').class_number()==2] # G. C. Greubel, Mar 01 2019

Extensions

Offset corrected by Jianing Song, Aug 29 2018

A046125 Number of negative fundamental discriminants having class number n.

Original entry on oeis.org

9, 18, 16, 54, 25, 51, 31, 131, 34, 87, 41, 206, 37, 95, 68, 322, 45, 150, 47, 350, 85, 139, 68, 511, 95, 190, 93, 457, 83, 255, 73, 708, 101, 219, 103, 668, 85, 237, 115, 912, 109, 339, 106, 691, 154, 268, 107, 1365, 132, 345, 159, 770, 114, 427, 163, 1205, 179, 291
Offset: 1

Views

Author

Keywords

Examples

			a(1) = 9 because the discriminants {-3,-4,-7,-8,-11,-19,-43,-67,-163} are the only ones with class number 1.
		

Crossrefs

Programs

  • Mathematica
    FundamentalDiscriminantQ[n_] := n != 1 && (Mod[n, 4] == 1 || ! Unequal[ Mod[n, 16], 8, 12]) && SquareFreeQ[n/2^IntegerExponent[n, 2]] (* via Eric E. Weisstein *);
    k = 1; t = Table[0, {125}]; While[k < 2000001, If[ FundamentalDiscriminantQ@ -k, a = NumberFieldClassNumber@ Sqrt@ -k; If[a < 126, t[[a]]++]]; k++]; t (* Robert G. Wilson v Jun 01 2011 *)
  • PARI
    lista(nn=10^7) = {my(NMAX=100, v = vector(NMAX), c); for (k=1, nn, if (isfundamental(-k), if ((c = qfbclassno(-k)) <= NMAX, v[c] ++););); v;} \\ Michel Marcus, Feb 17 2022

Formula

From Amiram Eldar, Apr 15 2025: (Start)
Formulas from Soundararajan (2007):
Sum_{k=1..n} a(k) = (3*zeta(2)/zeta(3)) * n^2 + O(n^2 * log(n)^(-1/2+eps)).
a(n) << n^2 * log(log(n))^4 / log(n). (End)

Extensions

Edited by Robert G. Wilson v, May 13 2003
Corrected and extended by Dean Hickerson, May 20 2003. The values were obtained by transcribing and combining data from Tables 1-3 of Buell's paper, which has information for all values of n up to 125.

A046004 Discriminants of imaginary quadratic fields with class number 7 (negated).

Original entry on oeis.org

71, 151, 223, 251, 463, 467, 487, 587, 811, 827, 859, 1163, 1171, 1483, 1523, 1627, 1787, 1987, 2011, 2083, 2179, 2251, 2467, 2707, 3019, 3067, 3187, 3907, 4603, 5107, 5923
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Union[(-NumberFieldDiscriminant[Sqrt[-#]] &) /@ Select[Range[6000], NumberFieldClassNumber[Sqrt[-#]] == 7 &]] (* Jean-François Alcover, Jun 27 2012 *)
  • PARI
    ok(n)={isfundamental(-n) && quadclassunit(-n).no == 7};
    for(n=1, 6000, if(ok(n)==1, print1(n, ", "))) \\ G. C. Greubel, Mar 01 2019
    
  • Sage
    [n for n in (1..6000) if is_fundamental_discriminant(-n) and QuadraticField(-n, 'a').class_number()==7] # G. C. Greubel, Mar 01 2019

A046006 Discriminants of imaginary quadratic fields with class number 9 (negated).

Original entry on oeis.org

199, 367, 419, 491, 563, 823, 1087, 1187, 1291, 1423, 1579, 2003, 2803, 3163, 3259, 3307, 3547, 3643, 4027, 4243, 4363, 4483, 4723, 4987, 5443, 6043, 6427, 6763, 6883, 7723, 8563, 8803, 9067, 10627
Offset: 1

Views

Author

Keywords

Comments

The class group of Q[sqrt(-4027)] is isomorphic to C_3 X C_3. For all other d in this sequence, the class group of Q[sqrt(-d)] is isomorphic to C_9. - Jianing Song, Dec 01 2019

Crossrefs

Programs

  • Mathematica
    Union[(-NumberFieldDiscriminant[Sqrt[-#]] &) /@ Select[Range[10700], NumberFieldClassNumber[Sqrt[-#]] == 9 &]] (* Jean-François Alcover, Jun 27 2012 *)
  • PARI
    ok(n)={isfundamental(-n) && quadclassunit(-n).no == 9};
    for(n=1, 11000, if(ok(n)==1, print1(n, ", "))) \\ G. C. Greubel, Mar 01 2019
    
  • Sage
    [n for n in (1..4000) if is_fundamental_discriminant(-n) and QuadraticField(-n, 'a').class_number()==9] # G. C. Greubel, Mar 01 2019

A046005 Discriminants of imaginary quadratic fields with class number 8 (negated).

Original entry on oeis.org

95, 111, 164, 183, 248, 260, 264, 276, 295, 299, 308, 371, 376, 395, 420, 452, 456, 548, 552, 564, 579, 580, 583, 616, 632, 651, 660, 712, 820, 840, 852, 868, 904, 915, 939, 952, 979, 987, 995, 1032, 1043, 1060, 1092, 1128, 1131, 1155, 1195, 1204
Offset: 1

Views

Author

Keywords

Comments

131 discriminants in this sequence (almost certainly but not proved).

Crossrefs

Programs

  • Mathematica
    Union[(-NumberFieldDiscriminant[Sqrt[-#]] &) /@ Select[Range[6400], NumberFieldClassNumber[Sqrt[-#]] == 8 &]] (* Jean-François Alcover, Jun 27 2012 *)
  • PARI
    ok(n)={isfundamental(-n) && quadclassunit(-n).no == 8} \\ Andrew Howroyd, Jul 20 2018
    
  • Sage
    [n for n in (1..6500) if is_fundamental_discriminant(-n) and QuadraticField(-n, 'a').class_number()==8] # G. C. Greubel, Mar 01 2019

A046008 Discriminants of imaginary quadratic fields with class number 11 (negated).

Original entry on oeis.org

167, 271, 659, 967, 1283, 1303, 1307, 1459, 1531, 1699, 2027, 2267, 2539, 2731, 2851, 2971, 3203, 3347, 3499, 3739, 3931, 4051, 5179, 5683, 6163, 6547, 7027, 7507, 7603, 7867, 8443, 9283, 9403, 9643, 9787, 10987, 13003, 13267, 14107, 14683, 15667
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Reap[ For[n = 1, n < 15000, n++, s = Sqrt[-n]; If[ NumberFieldClassNumber[s] == 11, d = -NumberFieldDiscriminant[s]; Print[d]; Sow[d]]]][[2, 1]] // Union (* Jean-François Alcover, Oct 05 2012 *)
  • PARI
    ok(n)={isfundamental(-n) && quadclassunit(-n).no == 11};
    for(n=1, 16000, if(ok(n)==1, print1(n, ", "))) \\ G. C. Greubel, Mar 01 2019
    
  • Sage
    [n for n in (1..16000) if is_fundamental_discriminant(-n) and QuadraticField(-n, 'a').class_number()==11] # G. C. Greubel, Mar 01 2019

Extensions

a(40)-a(41) from Giovanni Resta, Mar 20 2013

A191408 Duplicate of A006641.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 3, 2, 3, 2, 4, 2, 1, 5, 2, 2, 4, 4, 3, 1, 4, 7, 5, 3, 4, 6, 2, 2, 8, 5, 6, 3, 8, 2, 6, 10, 4, 2, 5, 5, 4, 4, 3, 10, 2, 7, 6, 4, 10, 1, 8, 11, 4, 5, 8, 4, 2, 13, 4, 9, 4, 3, 6, 14, 4, 7, 5, 4, 12, 2, 2, 15, 6, 6, 8, 7, 12, 4, 8, 13, 8, 2, 11, 8, 4, 3, 14, 4, 4, 8, 10, 8
Offset: 1

Views

Author

Robert G. Wilson v, Jun 01 2011

Keywords

Comments

Same as A006641. - Georg Fischer, Oct 12 2018

Crossrefs

Cf. A191410.

Programs

  • Mathematica
    FundamentalDiscriminantQ[n_Integer] := n != 1 && (Mod[n, 4] == 1 || !Unequal[ Mod[n, 16], 8, 12]) && SquareFreeQ[n/2^IntegerExponent[n, 2]] (* via Eric W. Weisstein *);
    NumberFieldClassNumber@ Sqrt@ # & /@ Select[-Range@ 300, FundamentalDiscriminantQ]
  • PARI
    for(n=1, 300, if(isfundamental(-n), print1(quadclassunit(-n).no, ", "))) \\ Andrew Howroyd, Jul 23 2018

Formula

Class number of A003657(n).

Extensions

Terms corrected by Andrew Howroyd and Robert G. Wilson v, Jul 24 2018

A046003 Discriminants of imaginary quadratic fields with class number 6 (negated).

Original entry on oeis.org

87, 104, 116, 152, 212, 244, 247, 339, 411, 424, 436, 451, 472, 515, 628, 707, 771, 808, 835, 843, 856, 1048, 1059, 1099, 1108, 1147, 1192, 1203, 1219, 1267, 1315, 1347, 1363, 1432, 1563, 1588, 1603, 1843, 1915, 1963, 2227, 2283, 2443, 2515, 2563, 2787, 2923, 3235, 3427, 3523, 3763
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Union[(-NumberFieldDiscriminant[Sqrt[-#]] &) /@ Select[Range[3800], NumberFieldClassNumber[Sqrt[-#]] == 6 &]] (* Jean-François Alcover, Jun 27 2012 *)
  • PARI
    ok(n)={isfundamental(-n) && quadclassunit(-n).no == 6};
    for(n=1, 4000, if(ok(n)==1, print1(n, ", "))) \\ G. C. Greubel, Mar 01 2019
    
  • Sage
    [n for n in (1..4000) if is_fundamental_discriminant(-n) and QuadraticField(-n, 'a').class_number()==6] # G. C. Greubel, Mar 01 2019

Extensions

More terms from Seiichi Manyama, Jun 03 2018
Showing 1-10 of 13 results. Next