cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A176255 Numbers of the form 4k-1 with least prime divisor of the form 4m+1.

Original entry on oeis.org

35, 55, 95, 115, 155, 175, 215, 235, 247, 275, 295, 299, 323, 335, 355, 391, 395, 403, 415, 455, 475, 515, 527, 535, 559, 575, 595, 611, 635, 655, 695, 715, 731, 755, 767, 775, 799, 815, 835, 871, 875, 895, 899, 923, 935, 955, 995, 1003, 1015, 1027, 1055
Offset: 1

Views

Author

Vladimir Shevelev, Apr 13 2010

Keywords

Comments

By definition, all terms are composite numbers.

Crossrefs

Programs

  • Magma
    [n: n in [1..1500] |  (n mod 4 eq 3) and (Min(PrimeFactors(n)) mod 4) eq 1]; // Vincenzo Librandi, Feb 07 2016
  • Maple
    A020639 := proc(n) if n = 1 then 1; else min(op(numtheory[factorset](n))) ; end if; end proc:
    isA176255 := proc(n) (n mod 4 = 3) and ( A020639(n) mod 4 = 1) ; end proc:
    for n from 3 to 1200 by 4 do if isA176255(n) then printf("%d,",n); end if; end do:
    # R. J. Mathar, Oct 30 2010
  • Mathematica
    Select[4 Range@ 265 - 1, Mod[#, 4] == 1 &[FactorInteger[#][[1, 1]]] &] (* Michael De Vlieger, Feb 07 2016 *)
  • PARI
    isok(n) = ((n % 4) == 3) && ((vecmin(factor(n)[,1]) % 4) == 1); \\ Michel Marcus, Feb 07 2016
    

Extensions

Terms > 559 from R. J. Mathar, Oct 30 2010

A002146 Smallest prime == 7 (mod 8) where Q(sqrt(-p)) has class number 2n+1.

Original entry on oeis.org

7, 23, 47, 71, 199, 167, 191, 239, 383, 311, 431, 647, 479, 983, 887, 719, 839, 1031, 1487, 1439, 1151, 1847, 1319, 3023, 1511, 1559, 2711, 4463, 2591, 2399, 3863, 2351, 3527, 3719
Offset: 0

Views

Author

Keywords

Comments

Conjecture: a(n) < A002148(n) for all n >= 1. - Jianing Song, Jul 20 2022

References

  • D. A. Buell, Binary Quadratic Forms. Springer-Verlag, NY, 1989, pp. 224-241.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002147, A002148, A060651, A002143 (class numbers).

Programs

  • PARI
    a(n) = forprime(p=2, oo, if ((p % 8) == 7, if (qfbclassno(-p) == 2*n+1, return(p)))); \\ Michel Marcus, Jul 20 2022

A176256 Numbers of the form 4k+1 with least prime divisor of the form 4m-1.

Original entry on oeis.org

9, 21, 33, 45, 49, 57, 69, 77, 81, 93, 105, 117, 121, 129, 133, 141, 153, 161, 165, 177, 189, 201, 209, 213, 217, 225, 237, 249, 253, 261, 273, 285, 297, 301, 309, 321, 329, 333, 341, 345, 357, 361, 369, 381, 393, 405, 413, 417, 429, 437, 441, 453, 465, 469
Offset: 1

Views

Author

Vladimir Shevelev, Apr 13 2010

Keywords

Comments

By definition, all terms are composite numbers.
Cannot be the hypotenuse of a primitive Pythagorean triangle. - Robert G. Wilson v, Mar 16 2014

Crossrefs

Complement of A020882 in 1 == Mod 4.

Programs

  • Mathematica
    fQ[n_] := Mod[ n, 4] == 1 && Mod[ FactorInteger[n][[1, 1]], 4] == 3; Select[Range@470, fQ] (* Robert G. Wilson v, Apr 08 2014 *)
  • PARI
    isok(n) = ((n % 4) == 1) && (f = factor(n)) && ((f[1, 1] % 4) == 3); \\ Michel Marcus, Mar 16 2014

Extensions

More terms from Michel Marcus, Mar 16 2014

A176257 Numbers of the form 4k-1 with greatest prime divisor of the form 4m+1.

Original entry on oeis.org

15, 39, 51, 75, 87, 91, 111, 119, 123, 135, 143, 159, 183, 187, 195, 203, 219, 255, 259, 267, 287, 291, 303, 319, 327, 339, 351, 371, 375, 407, 411, 427, 435, 447, 451, 455, 459, 471, 507, 511, 519, 543, 551, 555, 579, 583, 591, 595, 615, 623, 663, 667, 671
Offset: 1

Views

Author

Vladimir Shevelev, Apr 13 2010

Keywords

Comments

By definition, all terms are composite numbers.

Crossrefs

Programs

  • Mathematica
    Select[4*Range[200]-1,Divisible[FactorInteger[#][[-1,1]]-1,4]&] (* Harvey P. Dale, May 17 2013 *)
  • PARI
    isok(n) = ((n % 4) == 3) && ((vecmax(factor(n)[,1]) % 4) == 1); \\ Michel Marcus, Feb 07 2016

Extensions

Corrected and extended by Harvey P. Dale, May 17 2013

A060649 Smallest number k==3 (mod 4) such that Q(sqrt(-k)) has class number n, or 0 if no such k exists.

Original entry on oeis.org

3, 15, 23, 39, 47, 87, 71, 95, 199, 119, 167, 231, 191, 215, 239, 399, 383, 335, 311, 455, 431, 591, 647, 695, 479, 551, 983, 831, 887, 671, 719, 791, 839, 1079, 1031, 959, 1487, 1199, 1439, 1271, 1151, 1959, 1847, 1391, 1319, 2615, 3023, 1751, 1511, 1799
Offset: 1

Views

Author

Robert G. Wilson v, Apr 17 2001

Keywords

Comments

From Jianing Song, May 08 2021: (Start)
Conjecture 1: a(n) > 0 for all n;
Conjecture 2: a(n) = o(n^2). (End)
Conjecture: this is also the smallest absolute value of negative fundamental discriminant d for class number n. This is to say, for even n, if a(n) > 0 and A344072(n/2) > 0, then A344072(n/2) > a(n). - Jianing Song, Oct 03 2022

Crossrefs

Programs

  • Mathematica
    (* First do <
    				
  • PARI
    a(n) = my(d=3); while(!isfundamental(-d) || qfbclassno(-d)!=n, d+=4); d \\ Jianing Song, May 08 2021

Extensions

Edited by Dean Hickerson, Mar 17 2003
Escape clause added by Jianing Song, May 08 2021

A176258 Numbers of the form 4k+1 with greatest prime divisor of the form 4m-1.

Original entry on oeis.org

9, 21, 33, 49, 57, 69, 77, 81, 93, 105, 121, 129, 133, 141, 161, 165, 177, 189, 201, 209, 213, 217, 237, 245, 249, 253, 285, 297, 301, 309, 321, 329, 341, 345, 361, 381, 385, 393, 413, 417, 437, 441, 453, 465, 469, 473, 489, 497, 501, 513, 517, 525, 529, 537, 553, 573
Offset: 1

Views

Author

Vladimir Shevelev, Apr 13 2010

Keywords

Comments

All terms of A107978 are in the sequence.

Crossrefs

Programs

  • Mathematica
    Select[4 Range@ 150 + 1, Mod[#, 4] == 3 &[FactorInteger[#][[-1, 1]]] &] (* Michael De Vlieger, Feb 07 2016 *)
  • PARI
    isok(n) = (n != 1) && ((n % 4) == 1) && ((vecmax(factor(n)[,1]) % 4) == 3); \\ Michel Marcus, Feb 07 2016

Extensions

Corrected and extended by Michel Marcus, Feb 07 2016

A176262 Numbers of the form 3k+1 with greatest prime divisor of the form 3m-1.

Original entry on oeis.org

4, 10, 16, 22, 25, 34, 40, 46, 55, 58, 64, 82, 85, 88, 94, 100, 106, 115, 118, 121, 136, 142, 145, 154, 160, 166, 178, 184, 187, 202, 205, 214, 220, 226, 232, 235, 238, 250, 253, 256, 262, 265, 274, 289, 295, 298, 319, 322, 328, 334, 340, 346, 352, 355, 358, 376
Offset: 1

Views

Author

Vladimir Shevelev, Apr 13 2010

Keywords

Comments

All numbers of the form 2p, where p==2(mod 3) is prime, are in the sequence.

Crossrefs

Programs

  • Mathematica
    Select[3 Range@ 120 + 1, Mod[#, 3] == 2 &[FactorInteger[#][[-1, 1]]] &] (* Michael De Vlieger, Feb 07 2016 *)
  • PARI
    isok(n) = ((n % 3) == 1) && (n != 1) && ((vecmax(factor(n)[,1]) % 3) == 2); \\ Michel Marcus, Feb 07 2016

Extensions

Corrected and extended by Michel Marcus, Feb 07 2016

A176274 Numbers of the form 3k-1 with greatest prime divisor of the form 3m+1.

Original entry on oeis.org

14, 26, 35, 38, 56, 62, 65, 74, 86, 95, 98, 104, 122, 134, 140, 143, 146, 152, 155, 158, 182, 185, 194, 206, 209, 215, 218, 224, 245, 248, 254, 260, 266, 278, 296, 302, 305, 314, 323, 326, 335, 338, 341, 344, 350, 362, 365, 380, 386, 392, 395, 398, 407, 416, 422, 434, 446
Offset: 1

Views

Author

Vladimir Shevelev, Apr 14 2010

Keywords

Comments

All numbers of the form 2p, where p==1(mod 3) is prime, are in the sequence.

Crossrefs

Programs

  • Mathematica
    Select[Range[500],Divisible[#+1,3]&&Divisible[FactorInteger[#] [[-1,1]]-1, 3]&] (* Harvey P. Dale, Jul 29 2019 *)
  • PARI
    isok(n) = ((n % 3) == 2) && ((vecmax(factor(n)[,1]) % 3) == 1); \\ Michel Marcus, Feb 08 2016

Extensions

More terms from Michel Marcus, Feb 08 2016

A355876 Smallest prime p == 1 (mod 8) such that Q(sqrt(p)) has class number 2n+1.

Original entry on oeis.org

17, 257, 401, 577, 1129, 1297, 13033, 11321, 11257, 38569, 7057, 23593, 27689, 8761, 56857, 284561, 63361, 25601, 24337, 55441, 458929, 14401, 32401, 78401, 70969, 69697, 376897, 106537, 41617, 160001, 193601, 57601, 197137, 367721, 414433, 1506473, 444089, 331777, 156817
Offset: 0

Views

Author

Jianing Song, Jul 20 2022

Keywords

Comments

It seems that a(n) < A355877(n) for most n. a(n) > A355877(n) for n = 0, 1, 6, 9, 15, 20, 35, ...

Examples

			p = 257 is the smallest prime congruent to 1 modulo 8 such that Q(sqrt(p)) has class number 3, so a(1) = 257.
		

Crossrefs

Cf. A355878.
Similar sequences: A002148 (p == 3 (mod 8)), A355877 (p == 5 (mod 8)), A002146 (p == 7 (mod 8)).

Programs

  • PARI
    a(n) = forprime(p=2, oo, if(p%8==1 && qfbclassno(p)==2*n+1, return(p)))

A002149 Largest prime p==3 (mod 8) such that Q(sqrt(-p)) has class number 2n+1.

Original entry on oeis.org

163, 907, 2683, 5923, 10627, 15667, 20563, 34483, 37123, 38707, 61483, 90787, 93307, 103387, 166147, 133387, 222643, 210907, 158923, 253507, 296587
Offset: 0

Views

Author

Keywords

Comments

Most of these values are only conjectured to be correct.
Apr 15 2008: David Broadhurst says: I computed class numbers for prime discriminants with |D| < 10^9, but stopped when the first case with |D| > 5*10^8 was observed. That factor of 2 seems to me to be a reasonable margin of error, when you look at the pattern of what is included.
Arno, Robinson, & Wheeler prove a(0)-a(11). - Charles R Greathouse IV, Apr 25 2013

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Extensions

Edited by Dean Hickerson, Mar 17 2003
Showing 1-10 of 13 results. Next