cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A176256 Numbers of the form 4k+1 with least prime divisor of the form 4m-1.

Original entry on oeis.org

9, 21, 33, 45, 49, 57, 69, 77, 81, 93, 105, 117, 121, 129, 133, 141, 153, 161, 165, 177, 189, 201, 209, 213, 217, 225, 237, 249, 253, 261, 273, 285, 297, 301, 309, 321, 329, 333, 341, 345, 357, 361, 369, 381, 393, 405, 413, 417, 429, 437, 441, 453, 465, 469
Offset: 1

Views

Author

Vladimir Shevelev, Apr 13 2010

Keywords

Comments

By definition, all terms are composite numbers.
Cannot be the hypotenuse of a primitive Pythagorean triangle. - Robert G. Wilson v, Mar 16 2014

Crossrefs

Complement of A020882 in 1 == Mod 4.

Programs

  • Mathematica
    fQ[n_] := Mod[ n, 4] == 1 && Mod[ FactorInteger[n][[1, 1]], 4] == 3; Select[Range@470, fQ] (* Robert G. Wilson v, Apr 08 2014 *)
  • PARI
    isok(n) = ((n % 4) == 1) && (f = factor(n)) && ((f[1, 1] % 4) == 3); \\ Michel Marcus, Mar 16 2014

Extensions

More terms from Michel Marcus, Mar 16 2014

A176257 Numbers of the form 4k-1 with greatest prime divisor of the form 4m+1.

Original entry on oeis.org

15, 39, 51, 75, 87, 91, 111, 119, 123, 135, 143, 159, 183, 187, 195, 203, 219, 255, 259, 267, 287, 291, 303, 319, 327, 339, 351, 371, 375, 407, 411, 427, 435, 447, 451, 455, 459, 471, 507, 511, 519, 543, 551, 555, 579, 583, 591, 595, 615, 623, 663, 667, 671
Offset: 1

Views

Author

Vladimir Shevelev, Apr 13 2010

Keywords

Comments

By definition, all terms are composite numbers.

Crossrefs

Programs

  • Mathematica
    Select[4*Range[200]-1,Divisible[FactorInteger[#][[-1,1]]-1,4]&] (* Harvey P. Dale, May 17 2013 *)
  • PARI
    isok(n) = ((n % 4) == 3) && ((vecmax(factor(n)[,1]) % 4) == 1); \\ Michel Marcus, Feb 07 2016

Extensions

Corrected and extended by Harvey P. Dale, May 17 2013

A176258 Numbers of the form 4k+1 with greatest prime divisor of the form 4m-1.

Original entry on oeis.org

9, 21, 33, 49, 57, 69, 77, 81, 93, 105, 121, 129, 133, 141, 161, 165, 177, 189, 201, 209, 213, 217, 237, 245, 249, 253, 285, 297, 301, 309, 321, 329, 341, 345, 361, 381, 385, 393, 413, 417, 437, 441, 453, 465, 469, 473, 489, 497, 501, 513, 517, 525, 529, 537, 553, 573
Offset: 1

Views

Author

Vladimir Shevelev, Apr 13 2010

Keywords

Comments

All terms of A107978 are in the sequence.

Crossrefs

Programs

  • Mathematica
    Select[4 Range@ 150 + 1, Mod[#, 4] == 3 &[FactorInteger[#][[-1, 1]]] &] (* Michael De Vlieger, Feb 07 2016 *)
  • PARI
    isok(n) = (n != 1) && ((n % 4) == 1) && ((vecmax(factor(n)[,1]) % 4) == 3); \\ Michel Marcus, Feb 07 2016

Extensions

Corrected and extended by Michel Marcus, Feb 07 2016

A176262 Numbers of the form 3k+1 with greatest prime divisor of the form 3m-1.

Original entry on oeis.org

4, 10, 16, 22, 25, 34, 40, 46, 55, 58, 64, 82, 85, 88, 94, 100, 106, 115, 118, 121, 136, 142, 145, 154, 160, 166, 178, 184, 187, 202, 205, 214, 220, 226, 232, 235, 238, 250, 253, 256, 262, 265, 274, 289, 295, 298, 319, 322, 328, 334, 340, 346, 352, 355, 358, 376
Offset: 1

Views

Author

Vladimir Shevelev, Apr 13 2010

Keywords

Comments

All numbers of the form 2p, where p==2(mod 3) is prime, are in the sequence.

Crossrefs

Programs

  • Mathematica
    Select[3 Range@ 120 + 1, Mod[#, 3] == 2 &[FactorInteger[#][[-1, 1]]] &] (* Michael De Vlieger, Feb 07 2016 *)
  • PARI
    isok(n) = ((n % 3) == 1) && (n != 1) && ((vecmax(factor(n)[,1]) % 3) == 2); \\ Michel Marcus, Feb 07 2016

Extensions

Corrected and extended by Michel Marcus, Feb 07 2016

A176274 Numbers of the form 3k-1 with greatest prime divisor of the form 3m+1.

Original entry on oeis.org

14, 26, 35, 38, 56, 62, 65, 74, 86, 95, 98, 104, 122, 134, 140, 143, 146, 152, 155, 158, 182, 185, 194, 206, 209, 215, 218, 224, 245, 248, 254, 260, 266, 278, 296, 302, 305, 314, 323, 326, 335, 338, 341, 344, 350, 362, 365, 380, 386, 392, 395, 398, 407, 416, 422, 434, 446
Offset: 1

Views

Author

Vladimir Shevelev, Apr 14 2010

Keywords

Comments

All numbers of the form 2p, where p==1(mod 3) is prime, are in the sequence.

Crossrefs

Programs

  • Mathematica
    Select[Range[500],Divisible[#+1,3]&&Divisible[FactorInteger[#] [[-1,1]]-1, 3]&] (* Harvey P. Dale, Jul 29 2019 *)
  • PARI
    isok(n) = ((n % 3) == 2) && ((vecmax(factor(n)[,1]) % 3) == 1); \\ Michel Marcus, Feb 08 2016

Extensions

More terms from Michel Marcus, Feb 08 2016

A176275 Numbers of the form 6k+1 with the least prime divisor of the form 6m-1.

Original entry on oeis.org

25, 55, 85, 115, 121, 145, 175, 187, 205, 235, 253, 265, 289, 295, 319, 325, 355, 385, 391, 415, 445, 451, 475, 493, 505, 517, 529, 535, 565, 583, 595, 625, 649, 655, 667, 685, 697, 715, 745, 775, 781, 799, 805, 835, 841, 865, 895, 901, 913, 925, 943, 955, 979, 985, 1003, 1015, 1045, 1075
Offset: 1

Views

Author

Vladimir Shevelev, Apr 14 2010

Keywords

Comments

All terms of A108166 are in the sequence.

Crossrefs

Programs

  • Mathematica
    Select[6*Range[200] + 1, IntegerQ[(FactorInteger[#][[1, 1]] + 1)/6] &] (* Harvey P. Dale, Sep 19 2018 *)
  • PARI
    isok(n) = ((n % 6) == 1) && (n != 1) && ((vecmin(factor(n)[,1]) % 6) == 5); \\ Michel Marcus, Feb 08 2016

Extensions

Corrected by R. J. Mathar, May 03 2013

A218459 a(n) is the smallest positive integer d such that prime(n) = x^2 + dy^2 has a solution (x,y) in integers.

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 1, 2, 7, 1, 3, 1, 1, 2, 11, 1, 2, 1, 2, 7, 1, 3, 2, 1, 1, 1, 3, 2, 1, 1, 3, 2, 1, 2, 1, 3, 1, 2, 23, 1, 2, 1, 7, 1, 1, 3, 2, 3, 2, 1, 1, 7, 1, 2, 1, 7, 1, 3, 1, 1, 2, 1, 2, 11, 1, 1, 2, 1, 2, 1, 1, 7, 3, 1, 2, 22, 1, 1, 1, 1, 2, 1, 7, 1, 3, 2, 1, 1, 1, 3, 2, 19, 3, 2, 2
Offset: 1

Views

Author

Alonso del Arte, Oct 29 2012

Keywords

Comments

a(n) = smallest positive integer d such that prime(n) is reducible in the ring Z[sqrt(-d)].
If prime(n) == 1 or 2 mod 4, then a(n) = 1. If prime(n) == 3 mod 8, then a(n) = 2. If prime(n) == 7 mod 24 then a(n) = 3.
If prime(n) == 23 mod 24, a(n) >= 7. In particular, the above conditions are if and only if. - Charles R Greathouse IV, Oct 31 2012
a(n) = 7 if and only if prime(n) is 11, 15, or 23 mod 28. - Charles R Greathouse IV, Nov 09 2012
It appears 75% of values are 1 or 2, with the vast majority of the rest prime, though many are duplicates. Conjecture: Odd composite values belong to A176255. - Bill McEachen, Sep 03 2023

Examples

			a(1) = 1 because the first prime is 2, which is 1^2 + 1^2.
a(2) = 2 because the second prime is 3, which is 1^2 + 2*1^2, but not of the form x^2 + y^2 for any integers x, y.
a(3) = 1 because the third prime is 5, which is 2^2 + 1*1^2.
a(4) = 3 because the third prime is 7, which is 2^2 + 3*1^2, but not of the form x^2 + y^2 or x^2 + 2y^2 for any integers x, y.
		

References

  • Ethan D. Bolker, Elementary Number Theory: An Algebraic Approach. Mineola, New York: Dover Publications (1969, reprinted 2007): p. 68, Theorem 24.5; p. 74, Theorem 25.4.
  • David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989, Section 9, "Ring class fields and p = x^2 + n y^2." - From N. J. A. Sloane, Dec 26 2012

Crossrefs

Programs

  • Mathematica
    r[n_, d_] := Reduce[ Prime[n] == x^2 + d*y^2, {x, y}, Integers]; a[n_] := For[d = 1, True, d++, If[r[n, d] =!= False, Return[d] ] ]; Table[a[n], {n, 1, 95}] (* Jean-François Alcover, Apr 04 2013 *)
  • PARI
    ndv(d, p)=(#bnfisintnorm(bnfinit(y^2+d), p))==0
    forprime(p=2, 500, for(d=1, p, if(!ndv(d, p), print1(d, ", "); break))) \\ Georgi Guninski, Oct 27 2012
    
  • PARI
    check(d,p)={
       if(kronecker(-d,p)<0 || #bnfisintnorm(bnfinit('x^2+d),p)==0, return(0));
       for(y=1,sqrtint(p\d),if(issquare(p-d*y^2),return(1)));
       0
    };
    do(p)={
       if(p%24<23,return(if(p%4<3,1,if(p%8==3,2,3))));
       if(kronecker(p,7)>0, return(7));
       if(check(11,p), return(11));
       for(d=19,p,
        if(issquarefree(d) && check(d,p), return(d))
       )
    };
    apply(do, primes(100)) \\ Charles R Greathouse IV, Oct 31 2012
    
  • PARI
    A218459(n)={my(p=prime(n),d);while(d++,for(y=1,sqrtint((p-1)\d), issquare(p-d*y^2)&&return(d)))} \\ M. F. Hasler, May 05 2013

Formula

a(n) >= A088192(n). - Charles R Greathouse IV, Oct 31 2012

Extensions

a(76) corrected by Charles R Greathouse IV, Nov 13 2012
Edited by N. J. A. Sloane, Dec 07 2012, Dec 26 2012

A176278 Numbers of the form 6k-1 with the least prime divisor of the form 6m+1.

Original entry on oeis.org

77, 119, 161, 203, 221, 287, 299, 329, 371, 377, 413, 437, 497, 533, 539, 551, 581, 611, 623, 689, 707, 749, 767, 779, 791, 833, 893, 917, 923, 959, 1001, 1007, 1043, 1079, 1121, 1127, 1157, 1169, 1211, 1253, 1271, 1313, 1337, 1349, 1379, 1391, 1421, 1457
Offset: 1

Views

Author

Vladimir Shevelev, Apr 14 2010

Keywords

Comments

By definition, all terms are composite numbers.

Crossrefs

Programs

  • Mathematica
    Select[Range[11,2581,6],1==Mod[FactorInteger[ # ][[1,1]],6]&] (* Zak Seidov, Apr 14 2010 *)
  • PARI
    isok(n) = ((n % 6) == 5) && ((vecmin(factor(n)[,1]) % 6) == 1); \\ Michel Marcus, Feb 08 2016

Extensions

Corrected (erroneous 341 deleted) and extended by Zak Seidov, Apr 14 2010
Showing 1-8 of 8 results.