A005882 Theta series of planar hexagonal lattice (A2) with respect to deep hole.
3, 3, 6, 0, 6, 3, 6, 0, 3, 6, 6, 0, 6, 0, 6, 0, 9, 6, 0, 0, 6, 3, 6, 0, 6, 6, 6, 0, 0, 0, 12, 0, 6, 3, 6, 0, 6, 6, 0, 0, 3, 6, 6, 0, 12, 0, 6, 0, 0, 6, 6, 0, 6, 0, 6, 0, 9, 6, 6, 0, 6, 0, 0, 0, 6, 9, 6, 0, 0, 6, 6, 0, 12, 0, 6, 0, 6, 0, 0, 0, 6, 6, 12, 0, 0, 3, 12, 0, 0, 6, 6, 0, 6, 0, 6, 0, 3, 6, 0, 0, 12
Offset: 0
Keywords
Examples
G.f. = 3 + 3*x + 6*x^2 + 6*x^4 + 3*x^5 + 6*x^6 + 3*x^8 + 6*x^9 + 6*x^10 + ... G.f. = 3*q + 3*q^4 + 6*q^7 + 6*q^13 + 3*q^16 + 6*q^19 + 3*q^25 + 6*q^28 + ...
References
- J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 111.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from T. D. Noe)
- J. M. Borwein and P. B. Borwein, A cubic counterpart of Jacobi's identity and the AGM, Trans. Amer. Math. Soc., 323 (1991), no. 2, 691-701. MR1010408 (91e:33012) see page 695.
- Christian Kassel and Christophe Reutenauer, The zeta function of the Hilbert scheme of n points on a two-dimensional torus, arXiv:1505.07229v3 [math.AG], 2015. [Note that a later version of this paper has a different title and different contents, and the number-theoretical part of the paper was moved to the publication which is next in this list.]
- Christian Kassel and Christophe Reutenauer, Complete determination of the zeta function of the Hilbert scheme of n points on a two-dimensional torus, arXiv:1610.07793 [math.NT], 2016.
- G. Nebe and N. J. A. Sloane, Home page for hexagonal (or triangular) lattice A2
- N. J. A. Sloane and B. K. Teo, Theta series and magic numbers for close-packed spherical clusters, J. Chem. Phys. 83 (1985) 6520-6534.
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Magma
Basis( ModularForms( Gamma1(9), 1), 302)[2] * 3; /* Michael Somos, Jul 19 2014 */
-
Mathematica
a[ n_] := SeriesCoefficient[ 3 QPochhammer[ q^3]^3 / QPochhammer[ q], {q, 0, n}]; (* Michael Somos, Jul 19 2014 *)
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( 3 * eta(x^3 + A)^3 / eta(x + A), n))}; /* Michael Somos, Aug 15 2006 */
Formula
Expansion of q^(-1/3) * 3 * eta(q^3)^3 / eta(q) in powers of q.
Expansion of q^(-1/3) * c(q) in powers of q where c(q) is the third cubic AGM theta function.
Given g.f. A(x), then B(x) = x*A(x^3) satisfies 0 = f(B(x), B(x^2), B(x^4)) where f(u, v, w) = v^3 + 2*u*w^2 - u^2*w. - Michael Somos, Aug 15 2006
G.f.: 3 Product_{k>0} (1-q^(3k))^3/(1-q^k).
G.f.: Sum_{u,v in Z} x^(u*u + u*v + v*v + u + v). - Michael Somos, Jul 19 2014
Expansion of 2 * psi(x^2) * f(x^2, x^4) + phi(x) * f(x^1, x^5) in powers of x where phi(), psi() are Ramanujan theta functions and f(, ) is Ramanujan's general theta function. - Michael Somos, Sep 07 2018
Sum_{k=1..n} a(k) ~ 2*Pi*n/sqrt(3). - Vaclav Kotesovec, Dec 17 2022
Comments