cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005887 Theta series of f.c.c. lattice with respect to octahedral hole.

Original entry on oeis.org

6, 8, 24, 0, 30, 24, 24, 0, 48, 24, 48, 0, 30, 32, 72, 0, 48, 48, 24, 0, 96, 24, 72, 0, 54, 48, 72, 0, 48, 72, 72, 0, 96, 24, 96, 0, 48, 56, 96, 0, 102, 72, 48, 0, 144, 48, 48, 0, 48, 72, 168, 0, 96, 72, 72, 0, 96, 48, 120, 0, 78, 48, 144, 0, 144, 120, 48, 0, 96, 72, 96, 0, 96, 56, 168
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) := Prod_{k>=1} (1-(-q)^k) (see A121373), phi(q) := theta_3(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), psi(q) := Sum_{k=0..oo} q^(k*(k+1)/2) (A010054), chi(q) := Prod_{k>=0} (1+q^(2k+1)) (A000700).

Examples

			6 + 8*x + 24*x^2 + 30*x^4 + 24*x^5 + 24*x^6 + 48*x^8 + 24*x^9 + 48*x^
10 + ...
6*q + 8*q^3 + 24*q^5 + 30*q^9 + 24*q^11 + 24*q^13 + 48*q^17 + 24*q^19 + ...
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A005875.

Programs

  • Maple
    maxd:=20001: read format: temp0:=trunc(evalf(sqrt(maxd)))+2: a:=0: for i from -temp0 to temp0 do a:=a+q^( (i+1/2)^2): od: th2:=series(a,q,maxd): a:=0: for i from -temp0 to temp0 do a:=a+q^(i^2): od: th3:=series(a,q,maxd): th4:=series(subs(q=-q,th3),q,maxd):
    t1:=series((th3^3-th4^3)/(2*q),q,maxd): t1:=series(subs(q=sqrt(q),t1),q,floor(maxd/2)): t2:=seriestolist(t1): for n from 1 to nops(t2) do lprint(n-1, t2[n]); od:
  • Mathematica
    s = (EllipticTheta[3, 0, q]^3 - EllipticTheta[3, 0, -q]^3)/(2q) + O[q]^200; CoefficientList[s, q^2] (* Jean-François Alcover, Sep 19 2016 *)
  • PARI
    {a(n) = if( n<0, 0, n = 2*n + 1; polcoeff( sum(k=1, sqrtint(n), 2*x^k^2, 1 + x*O(x^n))^3, n))} /* Michael Somos, Aug 17 2009 */

Formula

Expansion of q^(-1) * (phi^3(q) - phi^3(-q)) / 2 in powers of q^2 where phi() is a Ramanujan theta function. - Michael Somos, Aug 17 2009
A005875(2*n + 1) = a(n). - Michael Somos, Aug 17 2009