A005896 Weighted count of partitions with odd parts.
0, 0, 0, 1, 1, 3, 4, 7, 9, 14, 19, 26, 34, 45, 59, 76, 96, 121, 153, 189, 234, 288, 353, 428, 519, 625, 752, 900, 1073, 1274, 1512, 1784, 2101, 2470, 2894, 3382, 3946, 4590, 5330, 6179, 7144, 8246, 9505, 10931, 12552, 14396, 16476, 18831, 21495
Offset: 0
Examples
G.f. = x^3 + x^4 + 3*x^5 + 4*x^6 + 7*x^7 + 9*x^8 + 14*x^9 + 19*x^10 + ... - _Michael Somos_, Oct 21 2018
References
- Andrews, George E. Ramanujan's "lost" notebook. V. Euler's partition identity. Adv. in Math. 61 (1986), no. 2, 156-164.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
Programs
-
Mathematica
max = 48; f[n_, x_] := Product[ 1/(1-x^(2k+1)), {k, 0, n}]; g[x_] = Sum[ f[max/2, x] - f[n, x], {n, 0, max/2}]; CoefficientList[ Series[ g[x], {x, 0, max}], x] (* Jean-François Alcover, Nov 17 2011, after g.f. *) a[ n_] := With[{A = 1 / QPochhammer[ q, q^2]}, SeriesCoefficient[ Sum[A - 1 / QPochhammer[ q, q^2, k], {k, 1, n/2}], {q, 0, n}]]; (* Michael Somos, Oct 21 2018 *)
-
PARI
/* set maximum */ MM = 50; /* G.f. for partitions with odd parts: */ (Q(n, q) = prod(k=0, n, 1/(1 - q^(2*k+1)), 1 + q*O(q^MM))); /* G.f. for A000009: */ Sq = Q(MM/2, q); /* G.f. for A005896: */ Sq0 = sum(n=0, MM/2, Sq-Q(n, q)); for(n=0, 48, print1(polcoeff(Sq0, n)","));
Formula
G.f.: Sum_{n=0..infinity} {S(q)-1/((1-q)(1-q^3)...(1-q^(2n+1)))}, where S(q) = g.f. for A000009.
Extensions
More terms from Michael Somos.