A005927 Theta series of diamond with respect to deep hole.
0, 0, 0, 4, 6, 0, 0, 0, 0, 0, 0, 12, 8, 0, 0, 0, 0, 0, 0, 12, 24, 0, 0, 0, 0, 0, 0, 16, 0, 0, 0, 0, 0, 0, 0, 24, 30, 0, 0, 0, 0, 0, 0, 12, 24, 0, 0, 0, 0, 0, 0, 24, 24, 0, 0, 0, 0, 0, 0, 36, 0, 0, 0, 0, 0, 0, 0, 12, 48, 0, 0, 0, 0, 0, 0, 28, 24, 0, 0, 0, 0, 0, 0, 36, 48, 0, 0, 0, 0, 0, 0, 24, 0, 0, 0, 0, 0
Offset: 0
Keywords
Examples
4*q^3 + 6*q^4 + 12*q^11 + 8*q^12 + 12*q^19 + 24*q^20 + 16*q^27 + ... - _Michael Somos_, Aug 17 2009
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Michael Somos, Introduction to Ramanujan theta functions
- N. J. A. Sloane and B. K. Teo, Theta series and magic numbers for close-packed spherical clusters, J. Chem. Phys. 83 (1985) 6520-6534.
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
a[n_]:= SeriesCoefficient[4*q^3*QPochhammer[-q^8, q^8]^3* QPochhammer[q^16, q^16]^3 + (EllipticTheta[3, 0, q^4]^3 - EllipticTheta[3, 0, -q^4]^3)/2, {q, 0, n}]; Table[a[n], {n,0,50}] (* G. C. Greubel, Apr 01 2018 *)
-
PARI
{a(n) = if( n<0, 0, if( n%8 == 3, n \= 8; polcoeff( 4 * sum(k=0, (sqrtint(8*n+1)-1)\2, x^((k^2+k)/2), x*O(x^n))^3, n), if( n%8 == 4, n /= 4; polcoeff( sum(k=1, sqrtint(n), 2*x^k^2, 1 + x*O(x^n))^3, n), 0 )))} /* Michael Somos, Aug 17 2009 */
Formula
Expansion of 4 * q^3 * psi^3(q^8) + (phi^3(q^4) - phi^3(-q^4)) / 2 in powers of q where phi(), psi() are Ramanujan theta functions. - Michael Somos, Aug 17 2009
a(8*n + 0) = a(8*n + 1) = a(8*n + 2) = a(8*n + 5) = a(8*n + 6) = a(8*n + 7) = 0. - Michael Somos, Aug 17 2009
Comments