A005931 Theta series of the coset of the E_7 lattice in its dual.
56, 576, 1512, 4032, 5544, 12096, 13664, 24192, 27216, 44352, 41832, 72576, 67536, 100800, 101304, 145728, 126504, 205632, 176456, 249984, 234360, 326592, 277200, 423360, 355320, 479808, 439992, 608832, 494928, 749952, 599760, 806400, 745416
Offset: 0
Keywords
Examples
56*q^(3/2) + 576*q^(7/2) + 1512*q^(11/2) + 4032*q^(15/2) + 5544*q^(19/2) + ...
References
- J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 125. Equation (113)
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
terms = 33; phi[q_] := EllipticTheta[3, 0, q]; chi[q_] := ((1 - InverseEllipticNomeQ[q])*InverseEllipticNomeQ[q]/(16*q))^(-1/24); psi[q_] := (1/2)*q^(-1/8)*EllipticTheta[2, 0, q^(1/2)]; s = 56*psi[q^2]^3 * phi[q]^4 + 128*q*psi[q^2]^7 + O[q]^terms; CoefficientList[s, q] (* Jean-François Alcover, Jul 04 2017, after Michael Somos *)
-
PARI
{a(n)= local(A, B); if(n<0, 0, n++; A= sum(k=1, sqrtint(n), 2*x^k^2, 1+x*O(x^n)); B= subst(A,x,-x); polcoeff( (A^4 -B^4)* (8*A^4 -B^4)/ 2/ sum(k=0, sqrtint( 4*n+1)\2, x^(k^2+k), x*O(x^n)), n))} /* Michael Somos, Jun 11 2007*/
Formula
Expansion of 56* psi(q^2)^3* phi(q)^4 +128* q* psi(q^2)^7 in powers of q where phi(),psi() are Ramanujan theta functions. - Michael Somos, Jun 11 2007
Comments