cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005931 Theta series of the coset of the E_7 lattice in its dual.

Original entry on oeis.org

56, 576, 1512, 4032, 5544, 12096, 13664, 24192, 27216, 44352, 41832, 72576, 67536, 100800, 101304, 145728, 126504, 205632, 176456, 249984, 234360, 326592, 277200, 423360, 355320, 479808, 439992, 608832, 494928, 749952, 599760, 806400, 745416
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) := Prod_{k>=1} (1-(-q)^k) (see A121373), phi(q) := theta_3(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), psi(q) := Sum_{k=0..oo} q^(k*(k+1)/2) (A010054), chi(q) := Prod_{k>=0} (1+q^(2k+1)) (A000700).

Examples

			56*q^(3/2) + 576*q^(7/2) + 1512*q^(11/2) + 4032*q^(15/2) + 5544*q^(19/2) + ...
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 125. Equation (113)
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Mathematica
    terms = 33; phi[q_] := EllipticTheta[3, 0, q]; chi[q_] := ((1 - InverseEllipticNomeQ[q])*InverseEllipticNomeQ[q]/(16*q))^(-1/24); psi[q_] := (1/2)*q^(-1/8)*EllipticTheta[2, 0, q^(1/2)]; s = 56*psi[q^2]^3 * phi[q]^4 + 128*q*psi[q^2]^7 + O[q]^terms; CoefficientList[s, q] (* Jean-François Alcover, Jul 04 2017, after Michael Somos *)
  • PARI
    {a(n)= local(A, B); if(n<0, 0, n++; A= sum(k=1, sqrtint(n), 2*x^k^2, 1+x*O(x^n)); B= subst(A,x,-x); polcoeff( (A^4 -B^4)* (8*A^4 -B^4)/ 2/ sum(k=0, sqrtint( 4*n+1)\2, x^(k^2+k), x*O(x^n)), n))} /* Michael Somos, Jun 11 2007*/

Formula

Expansion of 56* psi(q^2)^3* phi(q)^4 +128* q* psi(q^2)^7 in powers of q where phi(),psi() are Ramanujan theta functions. - Michael Somos, Jun 11 2007