A005942 a(2n) = a(n) + a(n+1), a(2n+1) = 2a(n+1), if n >= 2.
1, 2, 4, 6, 10, 12, 16, 20, 22, 24, 28, 32, 36, 40, 42, 44, 46, 48, 52, 56, 60, 64, 68, 72, 76, 80, 82, 84, 86, 88, 90, 92, 94, 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 148, 152, 156, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 182
Offset: 0
References
- J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003. See Problem 10, p. 335. - From N. J. A. Sloane, Jul 10 2012
- J. Berstel et al., Combinatorics on Words: Christoffel Words and Repetitions in Words, Amer. Math. Soc., 2008. See p. 83.
- Michel Rigo, Formal Languages, Automata and Numeration Systems, 2 vols., Wiley, 2014. Mentions this sequence - see "List of Sequences" in Vol. 2.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..1000
- S. Brlek, Enumeration of factors in the Thue-Morse word, Discrete Applied Math. 24 (1989), 83-96.
- A. de Luca and S. Varricchio, Some combinatorial properties of the Thue-Morse sequence and a problem in semigroups, Theoret. Comput. Sci. 63 (1989), 333-348.
- Jakub Konieczny and Clemens Müllner, Arithmetical subword complexity of automatic sequences, arXiv:2309.03180 [math.NT], 2023.
- Hsien-Kuei Hwang, S. Janson, and T.-H. Tsai, Exact and asymptotic solutions of the recurrence f(n) = f(floor(n/2)) + f(ceiling(n/2)) + g(n): theory and applications, Preprint 2016.
- Hsien-Kuei Hwang, S. Janson, and T.-H. Tsai, Exact and Asymptotic Solutions of a Divide-and-Conquer Recurrence Dividing at Half: Theory and Applications, ACM Transactions on Algorithms, 13:4 (2017), #47; DOI: 10.1145/3127585.
- Luís M. S. Russo, Ana D. Correia, Gonzalo Navarro, and Alexandre P. Francisco, Approximating Optimal Bidirectional Macro Schemes, arXiv:2003.02336 [cs.DS], 2020.
Programs
-
Haskell
import Data.List (transpose) a005942 n = a005942_list !! n a005942_list = 1 : 2 : 4 : 6 : zipWith (+) (drop 6 ts) (drop 5 ts) where ts = concat $ transpose [a005942_list, a005942_list] -- Reinhard Zumkeller, Nov 15 2012
-
Mathematica
a[0] = 1; a[1] = 2; a[2] = 4; a[3] = 6; a[n_?EvenQ] := a[n] = a[n/2] + a[n/2 + 1]; a[n_?OddQ] := a[n] = 2*a[(n + 1)/2]; Array[a,60,0] (* Jean-François Alcover, Apr 11 2011 *)
-
PARI
a(n)=if(n<4,2*max(0,n)+(n==0),if(n%2,2*a((n+1)/2),a(n/2)+a(n/2+1)))
Formula
a(n) = 2*(A006165(n-1) + n - 1), n > 1.
G.f. (1+x^2)/(1-x)^2 + 2*x^2/(1-x)^2 * Sum_{k>=0} (x^2^(k+1)-x^(3*2^k)). - Ralf Stephan, Jun 04 2003
For n > 2, a(n) = 3*(n-1) + A053646(n-1). - Max Alekseyev, May 15 2011
a(n) = 2*A275202(n-1) for n > 1. - N. J. A. Sloane, Jun 04 2019
Extensions
Typo in definition corrected by Reinhard Zumkeller, Nov 15 2012
Comments