cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005946 Number of n-step mappings with 5 inputs.

Original entry on oeis.org

1, 52, 358, 1304, 3455, 7556, 14532, 25488, 41709, 64660, 95986, 137512, 191243, 259364, 344240, 448416, 574617, 725748, 904894, 1115320, 1360471, 1643972, 1969628, 2341424, 2763525, 3240276, 3776202, 4376008, 5044579, 5786980, 6608456, 7514432, 8510513, 9602484
Offset: 1

Views

Author

Keywords

Comments

Hogg & Huberman paper has a misprint a(4)=304. - Sean A. Irvine, Oct 11 2016

References

  • T. Hogg and B. A. Huberman, Attractors on finite sets: the dissipative dynamics of computing structures, Phys. Review A 32 (1985), 2338-2346.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row n=5 of A144150.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(k=0, `if`(n<2, 1, 0),
          add(Stirling2(n, j)*b(j, k-1), j=0..n))
        end:
    a:= n-> b(5, n):
    seq(a(n), n=1..36);  # Alois P. Heinz, Aug 23 2021
  • Mathematica
    LinearRecurrence[{5, -10, 10, -5, 1}, {1, 52, 358, 1304, 3455}, 36] (* Jean-François Alcover, May 20 2022 *)

Formula

a(n) = h(5,n) where h(n, m) = Sum_{j} (n!/f(j)) * Product_{k=1..n} h(k,m-1)^(j(k)) and the sum runs over all partitions j=(j(1),...,j(n)) of n and f(j) = Product_{k=1..n} j(k)! * (k!)^(j(k)). That is, j satisfies Sum_{k=1..n} k*j(k) = n [From Hogg & Huberman]. - Sean A. Irvine, Oct 11 2016
G.f.: x*(24*x^3+108*x^2+47*x+1)/(1-x)^5. - Alois P. Heinz, Aug 23 2021

Extensions

a(4) corrected and more terms from Sean A. Irvine, Oct 11 2016