A005984 Related to recurrences over rings.
1, 2, 5, 6, 10, 14, 21, 22, 27, 32, 42, 48, 59, 70, 85
Offset: 1
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. Kløve, Linear recurring sequences in Boolean rings, Math. Scand., 33 (1973), 5-12.
- T. Kløve, Linear recurring sequences in Boolean rings, Math. Scand., 33 (1973), 5-12. (Annotated scanned copy)
Crossrefs
Cf. A093005.
Programs
-
PARI
lambda(m) = {return (floor(log(m)/log(2)));} D(m) = {local(vb, vbl, j); vb = binary(m); vbl = length(vb); vj = []; for (j=1, lambda(m)+1, if (vb[j] == 1, vj = concat(vj, vbl - j + 1););); return (vj);} Q(m) = {local(i, xp, vb); xp = lambda(m)+1; q = 1; vb = binary(m); for (i=1, length(vb), q += (vb[i]*Mod(1,2))*x^xp; xp--;); return (q);} G(n, vG) = {local(vn, vs, vp, vec, i, vi); if (vG[n] != 0, return (vG)); vn = binary(n); vs = sum(i=1, length(vn), vn[i]); if (vs == 1, vG[n] = Q(n); return (vG); ); vp = 1; vec = D(n); for (i=1, length(vec), vi = n-2^(vec[i]-1); vG = G(vi, vG); vp = lcm(vp, vG[vi]);); vG[n] = vp*Q(n); return (vG);} a(r) = {n = 2^r-1; vG = vector(n); vG = G(n, vG); g = vG[n]; phi = Mod(1,2)*(x + 1); dphi = phi; np = 1; while (1, if (type(g/dphi) != "t_POL", break;); dphi *= phi; np++;); return (np-1);} \\ Michel Marcus, Mar 03 2013
Extensions
a(15) from Sean A. Irvine, Nov 05 2016
Comments