A005986 Number of column-strict plane partitions of n.
1, 2, 5, 11, 23, 45, 87, 160, 290, 512, 889, 1514, 2547, 4218, 6909, 11184, 17926, 28449, 44772, 69862, 108205, 166371, 254107, 385617, 581729, 872535, 1301722, 1932006, 2853530, 4194867, 6139361, 8946742, 12984724, 18771092, 27033892
Offset: 0
Keywords
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Vaclav Kotesovec, Graph - The asymptotic ratio.
- Richard P. Stanley, Theory and Application of Plane Partitions, II, Studies in Appl. Math. 50 (1971), 259-279. DOI:10.1002/sapm1971503259.
Crossrefs
Cf. A003293.
Programs
-
Maple
with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d, j; if n=0 then 1 else add(add(d*p(d), d=divisors(j))*b(n-j), j=1..n)/n fi end end: a:=etr(n-> `if`(modp(n, 2)=0, n+2, n+3)/2): seq(a(n), n=0..45); # Vaclav Kotesovec, Mar 02 2015 after Alois P. Heinz
-
Mathematica
CoefficientList[ Series[ Product[1/((1 - x^i)*Product[(1 - x^j), {j, 2 i - 1, 40}]), {i, 40}], {x, 0, 40}], x] (* or *) CoefficientList[ Series[ Product[1/(1 - x^j)^Floor[(j + 3)/2], {j, 40}], {x, 0, 40}], x] (* Robert G. Wilson v, May 12 2014 *) nmax=50; CoefficientList[Series[Product[1/(1-x^k)^((2*k+5-(-1)^k)/4),{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Feb 28 2015 *)
-
PARI
A005986_list(N,x=(O('x^N)+1)*'x)=Vec(prod(k=1,N,1/(1-x^k)^((k+3)\2))) \\ M. F. Hasler, Sep 26 2018
Formula
G.f.: 1/Product((1-x^i)*Product(1-x^j,j=2*i-1..infinity),i=1..infinity) or 1/Product((1-x^i)^floor((i+3)/2),i=1..infinity). - Vladeta Jovovic, May 21 2006
a(n) ~ Zeta(3)^(25/72) * exp(1/24 - 25*Pi^4 / (3456*Zeta(3)) + 5*Pi^2*n^(1/3) / (24*Zeta(3)^(1/3)) + 3*Zeta(3)^(1/3)*n^(2/3) / 2) / (A^(1/2) * 2^(5/4) * 3^(1/2) * Pi * n^(61/72)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Mar 07 2015
Extensions
More terms from Vladeta Jovovic, May 21 2006
Comments