A005987 Number of symmetric plane partitions of n.
1, 1, 1, 2, 3, 4, 6, 8, 12, 16, 22, 29, 41, 53, 71, 93, 125, 160, 211, 270, 354, 450, 581, 735, 948, 1191, 1517, 1902, 2414, 3008, 3791, 4709, 5909, 7311, 9119, 11246, 13981, 17178, 21249, 26039, 32105, 39213, 48159, 58669, 71831, 87269
Offset: 0
Examples
From _M. F. Hasler_, Sep 26 2018: (Start) The only plane partition of n = 0 is the empty partition []; we consider it to be symmetric (as a 0 X 0 matrix), so a(0) = 1. The only plane partition of n = 1 is the partition [1] which is symmetric, so a(1) = 1. For n = 2 we have the partitions [2], [1 1] and [1; 1] (where ; denotes the end of a row). Only the first one is symmetric, so a(2) = 1. For n = 3 we have the partitions [3], [2 1], [2; 1], [1 1; 1 0], [1 1 1], [1; 1; 1]. The first and the fourth are symmetric, so a(3) = 2. (End)
References
- D. M. Bressoud, Proofs and Confirmations, Camb. Univ. Press, 1999; p. 134.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Corollary 7.20.5
Links
- T. D. Noe, Table of n, a(n) for n = 0..1000
- A. Björner and R. P. Stanley, with A combinatorial miscellany, L'Enseignement Math., Monograph No. 42, 2010.
- R. P. Stanley, Theory and application of plane partitions II, Studies in Appl. Math., 50 (1971), 259-279. DOI:10.1002/sapm1971503259. [Scan on author's personal web page].
Programs
-
Mathematica
terms = 46; s = Product[1/(1 - x^(2i-1))/(1 - x^(2i))^Floor[i/2], {i, 1, Ceiling[terms/2]}] + O[x]^terms; CoefficientList[s, x] (* Jean-François Alcover, Jul 10 2017 *)
-
PARI
a(n)=polcoeff(prod(k=1,n,(1-x^k)^-if(k%2,1,k\4),1+x*O(x^n)), n) \\ Michael Somos, May 19 2000
-
PARI
show(n)=select(t->(t=matconcat(t~))~==t, PlanePartitions(n)) \\ Using PlanePartitions() given in A091298, this selects and returns the list of symmetric plane partitions of n. - M. F. Hasler, Sep 26 2018
Formula
G.f.: Product_{i=1..oo} 1/(1-x^(2i-1))/(1-x^(2i))^floor(i/2). (Stanley 1971, Prop.14.3; Björner & Stanley 2010, p. 33).
a(n) ~ exp(3 * Zeta(3)^(1/3) * n^(2/3) / 2^(5/3) + Pi^2 * n^(1/3) / (2^(10/3) * Zeta(3)^(1/3)) - Pi^4 / (384*Zeta(3)) + 1/24) * Zeta(3)^(13/72) / (2^(77/72) * sqrt(3*Pi*A) * n^(49/72)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, May 05 2018
Extensions
More terms from Wouter Meeussen, Dec 11 1999
Edited by M. F. Hasler, Sep 26 2018
Comments