cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005987 Number of symmetric plane partitions of n.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 6, 8, 12, 16, 22, 29, 41, 53, 71, 93, 125, 160, 211, 270, 354, 450, 581, 735, 948, 1191, 1517, 1902, 2414, 3008, 3791, 4709, 5909, 7311, 9119, 11246, 13981, 17178, 21249, 26039, 32105, 39213, 48159, 58669, 71831, 87269
Offset: 0

Views

Author

Keywords

Comments

From M. F. Hasler, Sep 26 2018: (Start)
A plane partition of n is a matrix of nonnegative integers that sum up to n, and such that A[i,j] >= A[i+1,j], A[i,j] >= A[i,j+1] for all i,j. We can consider A of infinite size but there are at most n nonzero rows and columns and we ignore empty rows or columns. It is symmetric iff A = transpose(A), i.e., A[i,j] = A[j,i] for all i,j.
For any n, we have A000219(n) = a(n) + 2*A306098(n) where A306098(n) is the number of equivalence classes, modulo transposition, of non-symmetric plane partitions. (For any of these, its transpose is a different plane partition of n.) (End)

Examples

			From _M. F. Hasler_, Sep 26 2018: (Start)
The only plane partition of n = 0 is the empty partition []; we consider it to be symmetric (as a 0 X 0 matrix), so a(0) = 1.
The only plane partition of n = 1 is the partition [1] which is symmetric, so a(1) = 1.
For n = 2 we have the partitions [2], [1 1] and [1; 1] (where ; denotes the end of a row). Only the first one is symmetric, so a(2) = 1.
For n = 3 we have the partitions [3], [2 1], [2; 1], [1 1; 1 0], [1 1 1], [1; 1; 1]. The first and the fourth are symmetric, so a(3) = 2. (End)
		

References

  • D. M. Bressoud, Proofs and Confirmations, Camb. Univ. Press, 1999; p. 134.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Corollary 7.20.5

Crossrefs

Programs

  • Mathematica
    terms = 46; s = Product[1/(1 - x^(2i-1))/(1 - x^(2i))^Floor[i/2], {i, 1, Ceiling[terms/2]}] + O[x]^terms; CoefficientList[s, x] (* Jean-François Alcover, Jul 10 2017 *)
  • PARI
    a(n)=polcoeff(prod(k=1,n,(1-x^k)^-if(k%2,1,k\4),1+x*O(x^n)), n) \\ Michael Somos, May 19 2000
    
  • PARI
    show(n)=select(t->(t=matconcat(t~))~==t, PlanePartitions(n)) \\ Using PlanePartitions() given in A091298, this selects and returns the list of symmetric plane partitions of n. - M. F. Hasler, Sep 26 2018

Formula

G.f.: Product_{i=1..oo} 1/(1-x^(2i-1))/(1-x^(2i))^floor(i/2). (Stanley 1971, Prop.14.3; Björner & Stanley 2010, p. 33).
a(n) ~ exp(3 * Zeta(3)^(1/3) * n^(2/3) / 2^(5/3) + Pi^2 * n^(1/3) / (2^(10/3) * Zeta(3)^(1/3)) - Pi^4 / (384*Zeta(3)) + 1/24) * Zeta(3)^(13/72) / (2^(77/72) * sqrt(3*Pi*A) * n^(49/72)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, May 05 2018

Extensions

More terms from Wouter Meeussen, Dec 11 1999
Edited by M. F. Hasler, Sep 26 2018