cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A000219 Number of plane partitions (or planar partitions) of n.

Original entry on oeis.org

1, 1, 3, 6, 13, 24, 48, 86, 160, 282, 500, 859, 1479, 2485, 4167, 6879, 11297, 18334, 29601, 47330, 75278, 118794, 186475, 290783, 451194, 696033, 1068745, 1632658, 2483234, 3759612, 5668963, 8512309, 12733429, 18974973, 28175955, 41691046, 61484961, 90379784, 132441995, 193487501, 281846923
Offset: 0

Views

Author

Keywords

Comments

Two-dimensional partitions of n in which no row or column is longer than the one before it (compare A001970). E.g., a(4) = 13:
4.31.3.22.2.211.21..2.1111.111.11.11.1 but not 2
.....1....2.....1...1......1...11.1..1........ 11
....................1.............1..1
.....................................1
In the above, one also must require that rows & columns are nondecreasing, e.g., [1,1; 2] is also forbidden (which implies that row and column lengths are nondecreasing, if empty cells are identified with cells filled with 0's). - M. F. Hasler, Sep 22 2018
Can also be regarded as number of "safe pilings" of cubes in the corner of a room: the height should not increase away from the corner. - Wouter Meeussen
Also number of partitions of n objects of 2 colors, each part containing at least one black object; see example. - Christian G. Bower, Jan 08 2004
Number of partitions of n into 1 type of part 1, 2 types of part 2, ..., k types of part k. E.g., n=3 gives 111, 12, 12', 3, 3', 3''. - Jon Perry, May 27 2004
The bijection between the partitions in the two preceding comments goes by identifying a part with k black objects with a part of type k. - David Scambler and Joerg Arndt, May 01 2013
Can also be regarded as the number of Jordan canonical forms for an n X n matrix. (I.e., a 5 X 5 matrix has 24 distinct Jordan canonical forms, dependent on the algebraic and geometric multiplicity of each eigenvalue.) - Aaron Gable (agable(AT)hmc.edu), May 26 2009
(1/n) * convolution product of n terms * A001157 (sum of squares of divisors of n): (1, 5, 10, 21, 26, 50, 50, 85, ...) = a(n). As shown by [Bressoud, p. 12]: 1/6 * [1*24 + 5*13 + 10*6 + 21*3 + 26*1 + 50*1] = 288/6 = 48. - Gary W. Adamson, Jun 13 2009
Convolved with the aerated version (1, 0, 1, 0, 3, 0, 6, 0, 13, ...) = A026007: (1, 1, 2, 5, 8, 16, 28, 49, 83, ...). - Gary W. Adamson, Jun 13 2009
Starting with offset 1 = row sums of triangle A162453. - Gary W. Adamson, Jul 03 2009
Unfortunately, Wright's formula is also incomplete in the paper by G. Almkvist: "Asymptotic formulas and generalized Dedekind sums", p. 344, (the denominator should have sqrt(3*Pi) not sqrt(Pi)). This error was already corrected in the paper by Steven Finch: "Integer Partitions". - Vaclav Kotesovec, Aug 17 2015
Also the number of non-isomorphic weight-n chains of multisets whose dual is also a chain of multisets. The dual of a multiset partition has, for each vertex, one block consisting of the indices (or positions) of the blocks containing that vertex, counted with multiplicity. The weight of a multiset partition is the sum of sizes of its parts. - Gus Wiseman, Sep 25 2018

Examples

			A planar partition of 13:
  4 3 1 1
  2 1
  1
a(5) = (1/5!)*(sigma_2(1)^5+10*sigma_2(2)*sigma_2(1)^3+20*sigma_2(3)*sigma_2(1)^2+ 15*sigma_2(1)*sigma_2(2)^2+30*sigma_2(4)*sigma_2(1)+20*sigma_2(2)*sigma_2(3)+24*sigma_2(5)) = 24. - _Vladeta Jovovic_, Jan 10 2003
From _David Scambler_ and _Joerg Arndt_, May 01 2013: (Start)
There are a(4) = 13 partitions of 4 objects of 2 colors ('b' and 'w'), each part containing at least one black object:
1 black part:
  [ bwww ]
2 black parts:
  [ bbww ]
  [ bww, b ]
  [ bw, bw ]
3 black parts:
  [ bbbw ]
  [ bbw, b ]
  [ bb, bw ]
(but not: [bw, bb ] )
  [ bw, b, b ]
4 black parts:
  [ bbbb ]
  [ bbb, b ]
  [ bb, bb ]
  [ bb, b, b ]
  [ b, b, b, b ]
(End)
From _Geoffrey Critzer_, Nov 29 2014: (Start)
The corresponding partitions of the integer 4 are:
  4'''
  4''
  3'' + 1
  2' + 2'
  4'
  3' + 1
  2 + 2'
  2' + 1 + 1
  4
  3 + 1
  2 + 2
  2 + 1 + 1
  1 + 1 + 1 + 1.
(End)
From _Gus Wiseman_, Sep 25 2018: (Start)
Non-isomorphic representatives of the a(4) = 13 chains of multisets whose dual is also a chain of multisets:
  {{1,1,1,1}}
  {{1,1,2,2}}
  {{1,2,2,2}}
  {{1,2,3,3}}
  {{1,2,3,4}}
  {{1},{1,1,1}}
  {{2},{1,2,2}}
  {{3},{1,2,3}}
  {{1,1},{1,1}}
  {{1,2},{1,2}}
  {{1},{1},{1,1}}
  {{2},{2},{1,2}}
  {{1},{1},{1},{1}}
(End)
G.f. = 1 + x + 3*x^2 + 6*x^3 + 13*x^4 + 24*x^5 + 48*x^6 + 86*x^7 + 160*x^8 + ...
		

References

  • G. Almkvist, The differences of the number of plane partitions, Manuscript, circa 1991.
  • G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 241.
  • D. M. Bressoud, Proofs and Confirmations, Camb. Univ. Press, 1999; pp(n) on p. 10.
  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 575.
  • L. Carlitz, Generating functions and partition problems, pp. 144-169 of A. L. Whiteman, ed., Theory of Numbers, Proc. Sympos. Pure Math., 8 (1965). Amer. Math. Soc., see p. 145, eq. (1.6).
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983, (5.4.5).
  • P. A. MacMahon, Memoir on the theory of partitions of numbers - Part VI, Phil. Trans. Royal Soc., 211 (1912), 345-373.
  • P. A. MacMahon, Combinatory Analysis. Cambridge Univ. Press, London and New York, Vol. 1, 1915 and Vol. 2, 1916; see vol. 2, p 332.
  • P. A. MacMahon, The connexion between the sum of the squares of the divisors and the number of partitions of a given number, Messenger Math., 54 (1924), 113-116. Collected Papers, MIT Press, 1978, Vol. I, pp. 1364-1367. See Table II. - N. J. A. Sloane, May 21 2014
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Differences: A191659, A191660, A191661.
Row sums of A089353 and A091438 and A091298.
Column k=1 of A144048. - Alois P. Heinz, Nov 02 2012
Sequences "number of r-line partitions": A000041 (r=1), A000990 (r=2), A000991 (r=3), A002799 (r=4), A001452 (r=5), A225196 (r=6), A225197 (r=7), A225198 (r=8), A225199 (r=9).

Programs

  • Julia
    using Nemo, Memoize
    @memoize function a(n)
        if n == 0 return 1 end
        s = sum(a(n - j) * divisor_sigma(j, 2) for j in 1:n)
        return div(s, n)
    end
    [a(n) for n in 0:20] # Peter Luschny, May 03 2020
    
  • Maple
    series(mul((1-x^k)^(-k),k=1..64),x,63);
    # second Maple program:
    a:= proc(n) option remember; `if`(n=0, 1, add(
          a(n-j)*numtheory[sigma][2](j), j=1..n)/n)
        end:
    seq(a(n), n=0..50);  # Alois P. Heinz, Aug 17 2015
  • Mathematica
    CoefficientList[Series[Product[(1 - x^k)^-k, {k, 64}], {x, 0, 64}], x]
    Zeta[3]^(7/36)/2^(11/36)/Sqrt[3 Pi]/Glaisher E^(3 Zeta[3]^(1/3) (n/2)^(2/3) + 1/12)/n^(25/36) (* asymptotic formula after Wright; Vaclav Kotesovec, Jun 23 2014 *)
    a[0] = 1; a[n_] := a[n] = Sum[a[n - j] DivisorSigma[2, j], {j, n}]/n; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Sep 21 2015, after Alois P. Heinz *)
    CoefficientList[Series[Exp[Sum[DivisorSigma[2, n] x^n/n, {n, 50}]], {x, 0, 50}], x] (* Eric W. Weisstein, Feb 01 2018 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( exp( sum( k=1, n, x^k / (1 - x^k)^2 / k, x * O(x^n))), n))}; /* Michael Somos, Jan 29 2005 */
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( prod( k=1, n, (1 - x^k + x * O(x^n))^-k), n))}; /* Michael Somos, Jan 29 2005 */
    
  • PARI
    my(N=66, x='x+O('x^N)); Vec( prod(n=1,N, (1-x^n)^-n) ) \\ Joerg Arndt, Mar 25 2014
    
  • PARI
    A000219(n)=#PlanePartitions(n) \\ See A091298 for PlanePartitions(). For illustrative use: much slower than the above. - M. F. Hasler, Sep 24 2018
    
  • Python
    from sympy import cacheit
    from sympy.ntheory import divisor_sigma
    @cacheit
    def A000219(n):
        if n <= 1:
            return 1
        return sum(A000219(n - k) * divisor_sigma(k, 2) for k in range(1, n + 1)) // n
    print([A000219(n) for n in range(20)])
    # R. J. Mathar, Oct 18 2009
    
  • SageMath
    # uses[EulerTransform from A166861]
    b = EulerTransform(lambda n: n)
    print([b(n) for n in range(37)]) # Peter Luschny, Nov 11 2020

Formula

G.f.: Product_{k >= 1} 1/(1 - x^k)^k. - MacMahon, 1912.
Euler transform of sequence [1, 2, 3, ...].
a(n) ~ (c_2 / n^(25/36)) * exp( c_1 * n^(2/3) ), where c_1 = A249387 = 2.00945... and c_2 = A249386 = 0.23151... - Wright, 1931. Corrected Jun 01 2010 by Rod Canfield - see Mutafchiev and Kamenov. The exact value of c_2 is e^(2c)*2^(-11/36)*zeta(3)^(7/36)*(3*Pi)^(-1/2), where c = Integral_{y=0..inf} (y*log(y)/(e^(2*Pi*y)-1))dy = (1/2)*zeta'(-1).
The exact value of c_1 is 3*2^(-2/3)*Zeta(3)^(1/3) = 2.0094456608770137530649... - Vaclav Kotesovec, Sep 14 2014
a(n) = (1/n) * Sum_{k=1..n} a(n-k)*sigma_2(k), n > 0, a(0)=1, where sigma_2(n) = A001157(n) = sum of squares of divisors of n. - Vladeta Jovovic, Jan 20 2002
G.f.: exp(Sum_{n>0} sigma_2(n)*x^n/n). a(n) = Sum_{pi} Product_{i=1..n} binomial(k(i)+i-1, k(i)) where pi runs through all nonnegative solutions of k(1)+2*k(2)+..+n*k(n)=n. - Vladeta Jovovic, Jan 10 2003
From Vaclav Kotesovec, Nov 07 2016: (Start)
More precise asymptotics: a(n) ~ Zeta(3)^(7/36) * exp(3 * Zeta(3)^(1/3) * (n/2)^(2/3) + 1/12) / (A * sqrt(3*Pi) * 2^(11/36) * n^(25/36))
* (1 + c1/n^(2/3) + c2/n^(4/3) + c3/n^2), where
c1 = -0.23994424421250649114273759... = -277/(864*(2*Zeta(3))^(1/3)) - Zeta(3)^(2/3)/(1440*2^(1/3))
c2 = -0.02576771365117401620018082... = 353*Zeta(3)^(1/3)/(248832*2^(2/3)) - 17*Zeta(3)^(4/3)/(3225600*2^(2/3)) - 71575/(1492992*(2*Zeta(3))^(2/3))
c3 = -0.00533195302658826100834286... = -629557/859963392 - 42944125/(7739670528*Zeta(3)) + 14977*Zeta(3)/1114767360 - 22567*Zeta(3)^2/250822656000
and A = A074962 is the Glaisher-Kinkelin constant.
(End)

Extensions

Corrected by N. J. A. Sloane, Jul 29 2006
Minor edits by Vaclav Kotesovec, Oct 27 2014

A048141 Number of symmetrical planar partitions of n: planar partitions (A000219) that when regarded as 3-D objects have a threefold axis of symmetry that is the intersection of 3 mirror planes, i.e., C3v symmetry.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 3, 2, 0, 4, 4, 0, 4, 5, 0, 5, 7, 1, 6, 9, 1, 6, 11, 1, 8, 15, 2, 10, 20, 3, 10, 25, 4, 12, 33, 7, 14, 40, 9, 15, 48, 12, 18, 60, 17, 20, 74, 23, 22, 89, 30, 26, 108, 40, 30, 130, 51, 33, 157, 66, 37, 187, 85, 42, 222, 108, 47, 262, 136, 54
Offset: 1

Views

Author

Keywords

Examples

			The plane partition {{2,1},{1}} has C3v symmetry.
		

Crossrefs

A048142 Number of symmetrical planar partitions of n: planar partitions (A000219) that when regarded as 3-D objects have only a threefold axis of symmetry, i.e., C3 symmetry.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 2, 2, 0, 3, 3, 0, 5, 6, 0, 7, 9, 0, 11, 16, 1, 14, 23, 2, 20, 36, 4, 27, 52, 7, 37, 78, 13, 48, 111, 21, 65, 163, 36, 83, 227, 56, 109, 322, 89, 139, 444, 135, 179, 618, 207, 226, 841, 305, 288, 1151, 453, 361
Offset: 1

Views

Author

Keywords

Comments

Only one of the pair left-handed, right-handed, is enumerated.

Examples

			The plane partitions {{3, 2, 2}, {3, 1}, {1, 1}} and {{3, 2, 2}, {3, 2}, {1, 1}} have C3 symmetry.
		

Crossrefs

Formula

a(n) = (A096419(n) - A048141(n))/2.

A000786 Number of inequivalent planar partitions of n, when considering them as 3D objects.

Original entry on oeis.org

1, 1, 1, 2, 4, 6, 11, 19, 33, 55, 95, 158, 267, 442, 731, 1193, 1947, 3137, 5039, 8026, 12726, 20024, 31373, 48835, 75673, 116606, 178889, 273061, 415086, 628115, 946723, 1421082, 2125207, 3166152, 4700564, 6954151, 10254486, 15071903
Offset: 0

Views

Author

Keywords

Comments

Partitions that are the same when regarded as 3-D objects are counted only once. - Wouter Meeussen, May 2006

Examples

			From _M. F. Hasler_, Oct 01 2018: (Start)
For n = 2, all three plane partitions  [2], [1 1] and [1; 1] (where ";" means next row) correspond to a 1 X 1 X 2 rectangular cuboid, therefore a(2) = 1.
For n = 3, we have [3] ~ [1 1 1] ~ [1; 1; 1] all corresponding to a 1 X 1 X 3 rectangular cuboid or tower of height 3, and [2 1] ~ [2; 1] ~ [1 1; 1] correspond to an L-shaped object, therefore a(3) = 2.
For n = 4, [4] ~ [1 1 1 1] ~ [1; 1; 1; 1] correspond to the 4-tower; [3 1] ~ [3; 1] ~ [2 1 1] ~ [2; 1; 1] ~ [1 1 1; 1] ~ [1 1; 1; 1] all correspond to the same L-shaped object, [2 2] ~ [2; 2] ~ [1 1; 1 1] represent a "flat" square, and it remains [2, 1; 1], so a(4) = 4.
For n = 5, we again have the tower [5] ~ [1 1 1 1 1] ~ [1; 1; 1; 1; 1], a "narrow L" or 4-tower with one "foot" [4 1] ~ [4; 1] ~ [2 1 1 1] ~ [2; 1; 1; 1] ~ [1 1 1 1; 1] ~ [1 1; 1; 1; 1], a symmetric L-shape [3 1 1] ~ [3; 1; 1] ~ [1 1 1; 1; 1], a 3-tower with 2 feet [3 1; 1] ~ [2 1; 1; 1] ~ [2 1 1; 1], a flat 2+3 shape [3 2] ~ [3; 2] ~ [2 2 1] ~ [2; 2; 1] ~ [1 1 1; 1 1] ~ [1 1; 1 1; 1] and a 2X2 square with a cube on top, [2 1;1 1] ~ [2 2; 1] ~ [2 1; 2]. This yields a(5) = 6 classes. (End)
		

References

  • P. A. MacMahon, Combinatory Analysis. Cambridge Univ. Press, London and New York, Vol. 1, 1915 and Vol. 2, 1916; see vol. 2, p 332.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    nmax = 150;
    a219[0] = 1;
    a219[n_] := a219[n] = Sum[a219[n - j] DivisorSigma[2, j], {j, n}]/n;
    s = Product[1/(1 - x^(2i - 1))/(1 - x^(2i))^Floor[i/2], {i, 1, Ceiling[( nmax+1)/2]}] + O[x]^(nmax+1);
    A005987 = CoefficientList[s, x];
    a048140[n_] := (a219[n] + A005987[[n+1]])/2;
    A048141 = Cases[Import["https://oeis.org/A048141/b048141.txt", "Table"], {, }][[All, 2]];
    A048142 = Cases[Import["https://oeis.org/A048142/b048142.txt", "Table"], {, }][[All, 2]];
    a[0] = 1;
    a[n_] := (A048141[[n]] + 3 a048140[n] - a219[n] + 2 A048142[[n]])/3;
    a /@ Range[0, nmax] (* Jean-François Alcover, Dec 28 2019 *)

Formula

Equals (A048141 + 3*A048140 - A000219 + 2*A048142)/3. - Wouter Meeussen, May 2006

Extensions

More terms from Wouter Meeussen, 1999
Name & links edited and a(0) = 1 added by M. F. Hasler, Sep 30 2018

A000785 Number of asymmetrical planar partitions of n: planar partitions (A000219) that when regarded as 3-D objects have no symmetry.

Original entry on oeis.org

0, 0, 0, 1, 2, 5, 11, 21, 39, 73, 129, 226, 388, 659, 1100, 1821, 2976, 4828, 7754, 12370, 19574, 30789, 48097, 74725, 115410, 177366, 271159, 412665, 625098, 942932, 1416362, 2119282, 3158840, 4691431, 6942882, 10240503, 15054705
Offset: 1

Views

Author

Keywords

References

  • P. A. MacMahon, Combinatory Analysis. Cambridge Univ. Press, London and New York, Vol. 1, 1915 and Vol. 2, 1916; see vol. 2, p 332.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Equals (A048141 - 3*A048140 + 2*A000219 - A048142)/3.

Programs

  • Mathematica
    nmax = 150;
    a219[0] = 1;
    a219[n_] := a219[n] = Sum[a219[n - j] DivisorSigma[2, j], {j, n}]/n;
    s = Product[1/(1 - x^(2 i - 1))/(1 - x^(2 i))^Floor[i/2], {i, 1, Ceiling[( nmax + 1)/2]}] + O[x]^( nmax + 1);
    A005987 = CoefficientList[s, x];
    a048140[n_] := (a219[n] + A005987[[n + 1]])/2;
    A048141 = Cases[Import["https://oeis.org/A048141/b048141.txt", "Table"], {, }][[All, 2]];
    A048142 = Cases[Import["https://oeis.org/A048142/b048142.txt", "Table"], {, }][[All, 2]];
    a[1] = 0;
    a[n_] := (A048141[[n]] - 3 a048140[n] + 2 a219[n] - A048142[[n]])/3;
    a /@ Range[1, nmax] (* Jean-François Alcover, Dec 28 2019 *)

Extensions

More terms from Wouter Meeussen

A119269 Table by antidiagonals: number of m-dimensional partitions of n up to conjugacy, for n >= 1, m >= 0.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 4, 4, 2, 1, 1, 1, 6, 6, 4, 2, 1, 1, 1, 8, 11, 7, 4, 2, 1, 1, 1, 12, 19, 13, 7, 4, 2, 1, 1, 1, 16, 33, 25, 14, 7, 4, 2, 1, 1, 1, 22, 55, 49, 27, 14, 7, 4, 2, 1, 1, 1, 29, 95, 93, 55, 28, 14, 7, 4, 2, 1, 1, 1, 40, 158, 181, 111, 57, 28, 14, 7, 4, 2, 1, 1
Offset: 1

Views

Author

Keywords

Comments

Partitions are considered as generalized Ferrers diagrams; any permutation of the axes produces a conjugate.
Transposed table is A119338. - Max Alekseyev, May 14 2006

Examples

			Table starts:
  1, 1,  1,  1,  1
  1, 1,  1,  1,  1
  1, 2,  2,  2,  2
  1, 3,  4,  4,  4
  1, 4,  6,  7,  7
  1, 6, 11, 13, 14
		

Crossrefs

Formula

a(n,m) = a(n,n-2) for m >= n-1.

Extensions

More terms from Max Alekseyev, May 14 2006

A000784 Number of symmetrical planar partitions of n (planar partitions (A000219) that when regarded as 3-D objects have just one symmetry plane).

Original entry on oeis.org

0, 1, 2, 2, 4, 6, 6, 11, 16, 20, 28, 41, 51, 70, 93, 122, 158, 211, 266, 350, 450, 577, 730, 948, 1186, 1510, 1901, 2408, 2999, 3790, 4703, 5898, 7310, 9111, 11231, 13979, 17168, 21229, 26036, 32095, 39188, 48155, 58657, 71798, 87262, 106472, 129014
Offset: 1

Views

Author

Keywords

References

  • P. A. MacMahon, Combinatory Analysis. Cambridge Univ. Press, London and New York, Vol. 1, 1915 and Vol. 2, 1916; see vol. 2, p 332.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    nmax = 150;
    a219[0] = 1;
    a219[n_] := a219[n] = Sum[a219[n - j] DivisorSigma[2, j], {j, n}]/n;
    s = Product[1/(1 - x^(2 i - 1))/(1 - x^(2 i))^Floor[i/2], {i, 1, Ceiling[( nmax + 1)/2]}] + O[x]^( nmax + 1);
    A005987 = CoefficientList[s, x];
    a048140[n_] := (a219[n] + A005987[[n + 1]])/2;
    A048141 = Cases[Import["https://oeis.org/A048141/b048141.txt", "Table"], {, }][[All, 2]];
    a[1] = 0;
    a[n_] := -A048141[[n]] + 2 a048140[n] - a219[n];
    a /@ Range[1, nmax] (* Jean-François Alcover, Dec 28 2019 *)

Extensions

More terms from Wouter Meeussen

A048140 Number of planar partitions of n, but partitions that are mirror images of each other (when regarded as 3-D objects) are counted only once.

Original entry on oeis.org

1, 2, 4, 8, 14, 27, 47, 86, 149, 261, 444, 760, 1269, 2119, 3486, 5711, 9247, 14906, 23800, 37816, 59622, 93528, 145759, 226071, 348612, 535131, 817280, 1242824, 1881310, 2836377, 4258509, 6369669, 9491142, 14092537, 20851146, 30749471
Offset: 1

Views

Author

Keywords

Comments

Plane partitions seen as 3-dimensional-objects can have a mirror symmetry plane.

Examples

			n=3 gives 4 forms: {{3}}; {{1,1,1}}={{1},{1},{1}}; {{2,1}}={{2},{1}}; {{1,1},{1}}.
		

Crossrefs

Equals (A000219+A005987)/2.
Equals 2 Cs + 3 C1 + C3 + C3v, Cs=A000784, C1=A000785, C3=A048142, C3v=A048141. Cf. A000219, A005987.

Programs

  • Mathematica
    terms = 100;
    a219[0] = 1;
    a219[n_] := a219[n] = Sum[a219[n - j] DivisorSigma[2, j], {j, n}]/n;
    s = Product[1/(1 - x^(2i - 1))/(1 - x^(2i))^Floor[i/2], {i, 1, Ceiling[ (terms+1)/2]}] + O[x]^(terms+1);
    A005987 = CoefficientList[s, x];
    a[n_] := (a219[n] + A005987[[n+1]])/2;
    a /@ Range[terms] (* Jean-François Alcover, Dec 28 2019 *)

Extensions

Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, Jun 08 2007

A306098 Number of equivalence classes, modulo transposition, of non-symmetric plane partitions of n.

Original entry on oeis.org

0, 0, 1, 2, 5, 10, 21, 39, 74, 133, 239, 415, 719, 1216, 2048, 3393, 5586, 9087, 14695, 23530, 37462, 59172, 92947, 145024, 225123, 347421, 533614, 815378, 1240410, 1878302, 2832586, 4253800, 6363760, 9483831, 14083418, 20839900, 30735490, 45181303, 66210373, 96730731
Offset: 0

Views

Author

M. F. Hasler, Sep 26 2018

Keywords

Comments

A plane partition of n is a matrix of nonnegative integers that sum up to n, and such that A[i,j] >= A[i+1,j], A[i,j] >= A[i,j+1] for all i,j. We can consider A of infinite size but there are at most n nonzero rows and columns and we can ignore empty rows or columns. It is symmetric iff A = transpose(A), or A[i,j] = A[j,i] for all i,j.
For any n, we have the total number of plane partitions of n, A000219(n) = A005987(n) + 2*a(n), where A005987 is the number of symmetric plane partitions. For any of the non-symmetric plane partitions, its transpose is a different plane partition of n. So the difference A000219 - A005987 is always even, equal to twice a(n).

Examples

			The only plane partition of n = 0 is the empty partition []; by convention we do consider it to be symmetric (like a 0 X 0 matrix), so there is no non-symmetric plane partition of 0: a(0) = 0.
The only plane partition of n = 1 is the partition [1] which is symmetric, so there's again no non-symmetric plane partition of 1: a(1) = 0.
For n = 2 we have the partitions [2], [1 1] and [1; 1] (where ; denotes the end of a row). The first one is symmetric, the two others aren't, but are the transpose of each other, so a(2) = 1.
For n = 3 we have the partitions [3], [2 1], [2; 1], [1 1; 1 0], [1 1 1], [1; 1; 1]. The first and the fourth are symmetric, second and third, and fifth and sixth are non-symmetric, and pairwise the transpose of each other, so a(3) = 2.
		

Crossrefs

Programs

  • PARI
    a(n)=#select(t->(t=matconcat(t~))~!=t,PlanePartitions(n))/2 \\ For illustrative purpose: remove "#" to see the list. See A091298 for PlanePartitions(). More efficiently: A306098(n)=(A000219(n)-A005987(n))/2

Formula

a(n) = (A000219(n) - A005987(n))/2.

A048139 Number of planar partitions of n, when partitions that are rotations of each other (when regarded as 3-D objects) are counted only once.

Original entry on oeis.org

1, 1, 2, 5, 8, 16, 30, 54, 94, 168, 287, 493, 831, 1391, 2293, 3769, 6114, 9867, 15782, 25098, 39598, 62165, 96935, 150398, 232021, 356261, 544220, 827758, 1253222, 1889655, 2837455, 4244505, 6324993, 9392009, 13897056, 20494991, 30126628
Offset: 1

Views

Author

Keywords

Comments

Plane partitions seen as 3-dimensional-objects can have a threefold symmetry axis.

Examples

			n=3 gives 2 forms: {{3}}={{1,1,1}}={{1},{1},{1}} and {{2,1}}={{1,1},{1}}={{2},{1}}.
		

Crossrefs

Equals Cs + 2 C1 + 2 C3 + C3v, Cs=A000784, C1=A000785, C3=A048142, C3v=A048141. Cf. A000219, A005987.
Or, equals (2*A048141+A000219+4*A048142)/3.

Extensions

Edited by N. J. A. Sloane, Oct 26 2008 at the suggestion of R. J. Mathar.
Showing 1-10 of 11 results. Next