A051056 Record subsequence of b(3k), b()=A048142().
0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 11, 14, 20, 27, 37, 48, 65, 83, 109, 139, 179, 226, 288, 361, 456, 569, 712, 885, 1105, 1371, 1708, 2125
Offset: 0
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
A planar partition of 13: 4 3 1 1 2 1 1 a(5) = (1/5!)*(sigma_2(1)^5+10*sigma_2(2)*sigma_2(1)^3+20*sigma_2(3)*sigma_2(1)^2+ 15*sigma_2(1)*sigma_2(2)^2+30*sigma_2(4)*sigma_2(1)+20*sigma_2(2)*sigma_2(3)+24*sigma_2(5)) = 24. - _Vladeta Jovovic_, Jan 10 2003 From _David Scambler_ and _Joerg Arndt_, May 01 2013: (Start) There are a(4) = 13 partitions of 4 objects of 2 colors ('b' and 'w'), each part containing at least one black object: 1 black part: [ bwww ] 2 black parts: [ bbww ] [ bww, b ] [ bw, bw ] 3 black parts: [ bbbw ] [ bbw, b ] [ bb, bw ] (but not: [bw, bb ] ) [ bw, b, b ] 4 black parts: [ bbbb ] [ bbb, b ] [ bb, bb ] [ bb, b, b ] [ b, b, b, b ] (End) From _Geoffrey Critzer_, Nov 29 2014: (Start) The corresponding partitions of the integer 4 are: 4''' 4'' 3'' + 1 2' + 2' 4' 3' + 1 2 + 2' 2' + 1 + 1 4 3 + 1 2 + 2 2 + 1 + 1 1 + 1 + 1 + 1. (End) From _Gus Wiseman_, Sep 25 2018: (Start) Non-isomorphic representatives of the a(4) = 13 chains of multisets whose dual is also a chain of multisets: {{1,1,1,1}} {{1,1,2,2}} {{1,2,2,2}} {{1,2,3,3}} {{1,2,3,4}} {{1},{1,1,1}} {{2},{1,2,2}} {{3},{1,2,3}} {{1,1},{1,1}} {{1,2},{1,2}} {{1},{1},{1,1}} {{2},{2},{1,2}} {{1},{1},{1},{1}} (End) G.f. = 1 + x + 3*x^2 + 6*x^3 + 13*x^4 + 24*x^5 + 48*x^6 + 86*x^7 + 160*x^8 + ...
using Nemo, Memoize @memoize function a(n) if n == 0 return 1 end s = sum(a(n - j) * divisor_sigma(j, 2) for j in 1:n) return div(s, n) end [a(n) for n in 0:20] # Peter Luschny, May 03 2020
series(mul((1-x^k)^(-k),k=1..64),x,63); # second Maple program: a:= proc(n) option remember; `if`(n=0, 1, add( a(n-j)*numtheory[sigma][2](j), j=1..n)/n) end: seq(a(n), n=0..50); # Alois P. Heinz, Aug 17 2015
CoefficientList[Series[Product[(1 - x^k)^-k, {k, 64}], {x, 0, 64}], x] Zeta[3]^(7/36)/2^(11/36)/Sqrt[3 Pi]/Glaisher E^(3 Zeta[3]^(1/3) (n/2)^(2/3) + 1/12)/n^(25/36) (* asymptotic formula after Wright; Vaclav Kotesovec, Jun 23 2014 *) a[0] = 1; a[n_] := a[n] = Sum[a[n - j] DivisorSigma[2, j], {j, n}]/n; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Sep 21 2015, after Alois P. Heinz *) CoefficientList[Series[Exp[Sum[DivisorSigma[2, n] x^n/n, {n, 50}]], {x, 0, 50}], x] (* Eric W. Weisstein, Feb 01 2018 *)
{a(n) = if( n<0, 0, polcoeff( exp( sum( k=1, n, x^k / (1 - x^k)^2 / k, x * O(x^n))), n))}; /* Michael Somos, Jan 29 2005 */
{a(n) = if( n<0, 0, polcoeff( prod( k=1, n, (1 - x^k + x * O(x^n))^-k), n))}; /* Michael Somos, Jan 29 2005 */
my(N=66, x='x+O('x^N)); Vec( prod(n=1,N, (1-x^n)^-n) ) \\ Joerg Arndt, Mar 25 2014
A000219(n)=#PlanePartitions(n) \\ See A091298 for PlanePartitions(). For illustrative use: much slower than the above. - M. F. Hasler, Sep 24 2018
from sympy import cacheit from sympy.ntheory import divisor_sigma @cacheit def A000219(n): if n <= 1: return 1 return sum(A000219(n - k) * divisor_sigma(k, 2) for k in range(1, n + 1)) // n print([A000219(n) for n in range(20)]) # R. J. Mathar, Oct 18 2009
# uses[EulerTransform from A166861] b = EulerTransform(lambda n: n) print([b(n) for n in range(37)]) # Peter Luschny, Nov 11 2020
The plane partition {{2,1},{1}} has C3v symmetry.
From _M. F. Hasler_, Sep 26 2018: (Start) The only plane partition of n = 0 is the empty partition []; we consider it to be symmetric (as a 0 X 0 matrix), so a(0) = 1. The only plane partition of n = 1 is the partition [1] which is symmetric, so a(1) = 1. For n = 2 we have the partitions [2], [1 1] and [1; 1] (where ; denotes the end of a row). Only the first one is symmetric, so a(2) = 1. For n = 3 we have the partitions [3], [2 1], [2; 1], [1 1; 1 0], [1 1 1], [1; 1; 1]. The first and the fourth are symmetric, so a(3) = 2. (End)
terms = 46; s = Product[1/(1 - x^(2i-1))/(1 - x^(2i))^Floor[i/2], {i, 1, Ceiling[terms/2]}] + O[x]^terms; CoefficientList[s, x] (* Jean-François Alcover, Jul 10 2017 *)
a(n)=polcoeff(prod(k=1,n,(1-x^k)^-if(k%2,1,k\4),1+x*O(x^n)), n) \\ Michael Somos, May 19 2000
show(n)=select(t->(t=matconcat(t~))~==t, PlanePartitions(n)) \\ Using PlanePartitions() given in A091298, this selects and returns the list of symmetric plane partitions of n. - M. F. Hasler, Sep 26 2018
From _M. F. Hasler_, Oct 01 2018: (Start) For n = 2, all three plane partitions [2], [1 1] and [1; 1] (where ";" means next row) correspond to a 1 X 1 X 2 rectangular cuboid, therefore a(2) = 1. For n = 3, we have [3] ~ [1 1 1] ~ [1; 1; 1] all corresponding to a 1 X 1 X 3 rectangular cuboid or tower of height 3, and [2 1] ~ [2; 1] ~ [1 1; 1] correspond to an L-shaped object, therefore a(3) = 2. For n = 4, [4] ~ [1 1 1 1] ~ [1; 1; 1; 1] correspond to the 4-tower; [3 1] ~ [3; 1] ~ [2 1 1] ~ [2; 1; 1] ~ [1 1 1; 1] ~ [1 1; 1; 1] all correspond to the same L-shaped object, [2 2] ~ [2; 2] ~ [1 1; 1 1] represent a "flat" square, and it remains [2, 1; 1], so a(4) = 4. For n = 5, we again have the tower [5] ~ [1 1 1 1 1] ~ [1; 1; 1; 1; 1], a "narrow L" or 4-tower with one "foot" [4 1] ~ [4; 1] ~ [2 1 1 1] ~ [2; 1; 1; 1] ~ [1 1 1 1; 1] ~ [1 1; 1; 1; 1], a symmetric L-shape [3 1 1] ~ [3; 1; 1] ~ [1 1 1; 1; 1], a 3-tower with 2 feet [3 1; 1] ~ [2 1; 1; 1] ~ [2 1 1; 1], a flat 2+3 shape [3 2] ~ [3; 2] ~ [2 2 1] ~ [2; 2; 1] ~ [1 1 1; 1 1] ~ [1 1; 1 1; 1] and a 2X2 square with a cube on top, [2 1;1 1] ~ [2 2; 1] ~ [2 1; 2]. This yields a(5) = 6 classes. (End)
nmax = 150; a219[0] = 1; a219[n_] := a219[n] = Sum[a219[n - j] DivisorSigma[2, j], {j, n}]/n; s = Product[1/(1 - x^(2i - 1))/(1 - x^(2i))^Floor[i/2], {i, 1, Ceiling[( nmax+1)/2]}] + O[x]^(nmax+1); A005987 = CoefficientList[s, x]; a048140[n_] := (a219[n] + A005987[[n+1]])/2; A048141 = Cases[Import["https://oeis.org/A048141/b048141.txt", "Table"], {, }][[All, 2]]; A048142 = Cases[Import["https://oeis.org/A048142/b048142.txt", "Table"], {, }][[All, 2]]; a[0] = 1; a[n_] := (A048141[[n]] + 3 a048140[n] - a219[n] + 2 A048142[[n]])/3; a /@ Range[0, nmax] (* Jean-François Alcover, Dec 28 2019 *)
nmax = 150; a219[0] = 1; a219[n_] := a219[n] = Sum[a219[n - j] DivisorSigma[2, j], {j, n}]/n; s = Product[1/(1 - x^(2 i - 1))/(1 - x^(2 i))^Floor[i/2], {i, 1, Ceiling[( nmax + 1)/2]}] + O[x]^( nmax + 1); A005987 = CoefficientList[s, x]; a048140[n_] := (a219[n] + A005987[[n + 1]])/2; A048141 = Cases[Import["https://oeis.org/A048141/b048141.txt", "Table"], {, }][[All, 2]]; A048142 = Cases[Import["https://oeis.org/A048142/b048142.txt", "Table"], {, }][[All, 2]]; a[1] = 0; a[n_] := (A048141[[n]] - 3 a048140[n] + 2 a219[n] - A048142[[n]])/3; a /@ Range[1, nmax] (* Jean-François Alcover, Dec 28 2019 *)
nmax = 150; a219[0] = 1; a219[n_] := a219[n] = Sum[a219[n - j] DivisorSigma[2, j], {j, n}]/n; s = Product[1/(1 - x^(2 i - 1))/(1 - x^(2 i))^Floor[i/2], {i, 1, Ceiling[( nmax + 1)/2]}] + O[x]^( nmax + 1); A005987 = CoefficientList[s, x]; a048140[n_] := (a219[n] + A005987[[n + 1]])/2; A048141 = Cases[Import["https://oeis.org/A048141/b048141.txt", "Table"], {, }][[All, 2]]; a[1] = 0; a[n_] := -A048141[[n]] + 2 a048140[n] - a219[n]; a /@ Range[1, nmax] (* Jean-François Alcover, Dec 28 2019 *)
n=3 gives 4 forms: {{3}}; {{1,1,1}}={{1},{1},{1}}; {{2,1}}={{2},{1}}; {{1,1},{1}}.
terms = 100; a219[0] = 1; a219[n_] := a219[n] = Sum[a219[n - j] DivisorSigma[2, j], {j, n}]/n; s = Product[1/(1 - x^(2i - 1))/(1 - x^(2i))^Floor[i/2], {i, 1, Ceiling[ (terms+1)/2]}] + O[x]^(terms+1); A005987 = CoefficientList[s, x]; a[n_] := (a219[n] + A005987[[n+1]])/2; a /@ Range[terms] (* Jean-François Alcover, Dec 28 2019 *)
Comments