A005999 Number of paraffins.
1, 2, 6, 11, 23, 38, 64, 95, 141, 194, 266, 347, 451, 566, 708, 863, 1049, 1250, 1486, 1739, 2031, 2342, 2696, 3071, 3493, 3938, 4434, 4955, 5531, 6134, 6796, 7487, 8241, 9026, 9878, 10763, 11719, 12710, 13776, 14879, 16061, 17282, 18586, 19931, 21363, 22838, 24404, 26015, 27721, 29474, 31326, 33227, 35231, 37286
Offset: 1
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Enrique Pérez Herrero, Table of n, a(n) for n = 1..5000
- S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926.
- S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926. (Annotated scanned copy)
- Index entries for linear recurrences with constant coefficients, signature (2, 1, -4, 1, 2, -1).
Crossrefs
Cf. A005997.
Programs
-
Magma
[1+Floor((n-1)/2)+2*(Binomial(n+1,3)-Binomial(Floor((n+1)/2),3)-Binomial(Ceiling((n+1)/2),3))-(n-1)^2 : n in [1..50]]; // Wesley Ivan Hurt, Sep 16 2014
-
Maple
A005999:=n->1+floor((n-1)/2)+2*(binomial(n+1,3)-binomial(floor((n+1)/2),3)-binomial(ceil((n+1)/2),3))-(n-1)^2: seq(A005999(n), n=1..40); # Wesley Ivan Hurt, Sep 16 2014
-
Mathematica
A005997[n_] := 1 + Floor[(n-1)/2] + 2*(Binomial[n+1,3] -Binomial[Floor[(n+1)/2],3] - Binomial[Ceiling[(n+1)/2],3]); A005999[n_] := A005997[n] - (n-1)^2; Array[A005999, 100] (* Enrique Pérez Herrero, Apr 22 2012 *)
-
PARI
Vec( (x^5+2*x^4+x^3+x^2+1)/(-1+x)^2/(-1+x^2)^2 + O(x^66) ) \\ Joerg Arndt, Sep 16 2014
Formula
G.f.: (x^5+2*x^4+x^3+x^2+1)/((-1+x)^2*(-1+x^2)^2).
a(n) = A005997(n) - (n-1)^2. - Enrique Pérez Herrero, Mar 28 2012