cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005999 Number of paraffins.

Original entry on oeis.org

1, 2, 6, 11, 23, 38, 64, 95, 141, 194, 266, 347, 451, 566, 708, 863, 1049, 1250, 1486, 1739, 2031, 2342, 2696, 3071, 3493, 3938, 4434, 4955, 5531, 6134, 6796, 7487, 8241, 9026, 9878, 10763, 11719, 12710, 13776, 14879, 16061, 17282, 18586, 19931, 21363, 22838, 24404, 26015, 27721, 29474, 31326, 33227, 35231, 37286
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A005997.

Programs

  • Magma
    [1+Floor((n-1)/2)+2*(Binomial(n+1,3)-Binomial(Floor((n+1)/2),3)-Binomial(Ceiling((n+1)/2),3))-(n-1)^2 : n in [1..50]]; // Wesley Ivan Hurt, Sep 16 2014
    
  • Maple
    A005999:=n->1+floor((n-1)/2)+2*(binomial(n+1,3)-binomial(floor((n+1)/2),3)-binomial(ceil((n+1)/2),3))-(n-1)^2: seq(A005999(n), n=1..40); # Wesley Ivan Hurt, Sep 16 2014
  • Mathematica
    A005997[n_] := 1 + Floor[(n-1)/2] + 2*(Binomial[n+1,3] -Binomial[Floor[(n+1)/2],3] - Binomial[Ceiling[(n+1)/2],3]); A005999[n_] := A005997[n] - (n-1)^2; Array[A005999, 100] (* Enrique Pérez Herrero, Apr 22 2012 *)
  • PARI
    Vec( (x^5+2*x^4+x^3+x^2+1)/(-1+x)^2/(-1+x^2)^2 + O(x^66) ) \\ Joerg Arndt, Sep 16 2014

Formula

G.f.: (x^5+2*x^4+x^3+x^2+1)/((-1+x)^2*(-1+x^2)^2).
a(n) = A005997(n) - (n-1)^2. - Enrique Pérez Herrero, Mar 28 2012