cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A005997 Number of paraffins.

Original entry on oeis.org

1, 3, 10, 20, 39, 63, 100, 144, 205, 275, 366, 468, 595, 735, 904, 1088, 1305, 1539, 1810, 2100, 2431, 2783, 3180, 3600, 4069, 4563, 5110, 5684, 6315, 6975, 7696, 8448, 9265, 10115, 11034, 11988, 13015, 14079, 15220, 16400, 17661, 18963, 20350, 21780, 23299
Offset: 1

Views

Author

Keywords

References

  • S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A005999.

Programs

  • Maple
    a:= n-> (Matrix([[0, 0, -1, -5, -12, -26]]). Matrix(6, (i, j)-> if (i=j-1) then 1 elif j=1 then [2, 1, -4, 1, 2, -1][i] else 0 fi)^n)[1, 1]: seq (a(n), n=1..50); # Alois P. Heinz, Jul 31 2008
  • Mathematica
    A005997[n_]:=1+Floor[(n-1)/2]+2*(Binomial[n+1,3]-Binomial[Floor[(n+1)/2],3]-Binomial[Ceiling[(n+1)/2],3]); Array[A005997,37] (* Enrique Pérez Herrero, Apr 22 2012 *)
    LinearRecurrence[{2, 1, -4, 1, 2, -1}, {1, 3, 10, 20, 39, 63}, 37] (* Bruno Berselli, Apr 22 2012 *)

Formula

G.f.: (x^3+3*x^2+x+1)*x / ((-1+x)^2*(-1+x^2)^2).
a(n) = A005999(n) + (n-1)^2. - Enrique Pérez Herrero, Mar 27 2012
a(n) = 1 + floor((n-1)/2) + 2*(C(n+1,3)-C(floor((n+1)/2),3)-C(ceiling((n+1)/2),3)). - Enrique Pérez Herrero, Apr 22 2012
a(n) = (n+1)*(2*n^2-(-1)^n+1)/8. - Bruno Berselli, Apr 22 2012
a(n) = A004526(n) + 2*A111384(n). - Enrique Pérez Herrero, Apr 25 2012
E.g.f.: (x*(3 + 4*x + x^2)*cosh(x) + (1 + 2*x + 4*x^2 + x^3)*sinh(x))/4. - Stefano Spezia, Dec 13 2021
Showing 1-1 of 1 results.