A005994
Alkane (or paraffin) numbers l(7,n).
Original entry on oeis.org
1, 3, 9, 19, 38, 66, 110, 170, 255, 365, 511, 693, 924, 1204, 1548, 1956, 2445, 3015, 3685, 4455, 5346, 6358, 7514, 8814, 10283, 11921, 13755, 15785, 18040, 20520, 23256, 26248, 29529, 33099, 36993, 41211, 45790, 50730, 56070, 61810, 67991
Offset: 0
- S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..1000
- Johann Cigler, Some remarks on Rogers-Szegö polynomials and Losanitsch's triangle, arXiv:1711.03340 [math.CO], 2017.
- S. J. Cyvin et al., Polygonal systems including the corannulene and coronene homologs: novel applications of Pólya's theorem, Z. Naturforsch., 52a (1997), 867-873.
- S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926. (Annotated scanned copy)
- N. J. A. Sloane, Classic Sequences
- Ata Aydin Uslu and Hamdi G. Ozmenekse, Number of bracelets made with 1 blue, 4 red and n black beads.
- Ata Aydin Uslu and Hamdi G. Ozmenekse, Number of bracelets made with 1 blue, 2 red and n black beads.
- Index entries for linear recurrences with constant coefficients, signature (3, -1, -5, 5, 1, -3, 1).
-
-- Following Gary W. Adamson.
import Data.List (inits, intersperse)
a005994 n = a005994_list !! n
a005994_list = map (sum . zipWith (*) (intersperse 0 [1, 3 ..]) . reverse) $
tail $ inits $ tail a000217_list
-- Reinhard Zumkeller, Feb 27 2015
-
a:= n -> (Matrix([[1, 0$4, 1, 3]]). Matrix(7, (i,j)-> if (i=j-1) then 1 elif j=1 then [3, -1, -5, 5, 1, -3, 1][i] else 0 fi)^n)[1,1]: seq (a(n), n=0..40); # Alois P. Heinz, Jul 31 2008
-
LinearRecurrence[{3,-1,-5,5,1,-3,1},{1,3,9,19,38,66,110},50] (* or *) CoefficientList[Series[(1+x^2)/((1-x)^3(1-x^2)^2),{x,0,50}],x] (* Harvey P. Dale, May 02 2011 *)
nn=45;With[{a=Accumulate[Range[nn]],b=Riffle[Range[1,nn,2],0]}, Flatten[ Table[ListConvolve[Take[a,n],Take[b,n]],{n,nn}]]] (* Harvey P. Dale, Nov 11 2011 *)
-
{a(n)=if(n<-4, n=-5-n); polcoeff( (1+x^2)/((1-x)^3*(1-x^2)^2)+x*O(x^n), n)} /* Michael Somos, Mar 08 2007 */
A123610
Triangle read by rows, where T(n,k) = (1/n)*Sum_{d|(n,k)} phi(d) * binomial(n/d,k/d)^2 for n >= k > 0, with T(n,0) = 1 for n >= 0.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 10, 4, 1, 1, 5, 20, 20, 5, 1, 1, 6, 39, 68, 39, 6, 1, 1, 7, 63, 175, 175, 63, 7, 1, 1, 8, 100, 392, 618, 392, 100, 8, 1, 1, 9, 144, 786, 1764, 1764, 786, 144, 9, 1, 1, 10, 205, 1440, 4420, 6352, 4420, 1440, 205, 10, 1, 1, 11, 275, 2475, 9900
Offset: 0
Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins:
1;
1, 1;
1, 2, 1;
1, 3, 3, 1;
1, 4, 10, 4, 1;
1, 5, 20, 20, 5, 1;
1, 6, 39, 68, 39, 6, 1;
1, 7, 63, 175, 175, 63, 7, 1;
1, 8, 100, 392, 618, 392, 100, 8, 1;
1, 9, 144, 786, 1764, 1764, 786, 144, 9, 1;
1, 10, 205, 1440, 4420, 6352, 4420, 1440, 205, 10, 1;
...
Example of column g.f.s are:
column 1: 1/(1 - x)^2;
column 2: Ser([1, 1, 3, 1]) / ((1 - x)^2*(1 - x^2)^2) = g.f. of A005997;
column 3: Ser([1, 2, 11, 26, 30, 26, 17, 6, 1]) / ((1 - x)^2*(1 - x^2)^2*(1 -x^3)^2);
column 4: Ser([1, 3, 28, 94, 240, 440, 679, 839, 887, 757, 550, 314, 148, 48, 11, 1]) / ((1 - x)^2*(1 - x^2)^2*(1 - x^3)^2*(1 - x^4)^2);
where Ser() denotes a polynomial in x with the given coefficients, as in Ser([1, 1, 3, 1]) = (1 + x + 3*x^2 + x^3).
-
T[, 0] = 1; T[n, k_] := 1/n DivisorSum[n, If[GCD[k, #] == #, EulerPhi[#]* Binomial[n/#, k/#]^2, 0]&]; Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 06 2015, adapted from PARI *)
-
{T(n,k)=if(k==0,1,(1/n)*sumdiv(n,d,if(gcd(k,d)==d, eulerphi(d)*binomial(n/d,k/d)^2,0)))}
Original entry on oeis.org
1, 4, 20, 68, 175, 392, 786, 1440, 2475, 4036, 6292, 9464, 13805, 19600, 27200, 36996, 49419, 64980, 84238, 107800, 136367, 170696, 211600, 260000, 316881, 383292, 460404, 549460, 651775, 768800, 902066, 1053184, 1223915, 1416108, 1631700, 1872792, 2141581
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,6,-9,12,-9,6,-6,4,-1).
-
CoefficientList[Series[(1 + 2*x + 11*x^2 + 26*x^3 + 30*x^4 + 26*x^5 + 17*x^6 + 6*x^7 + x^8)/((1 - x)^2*(1 - x^2)^2*(1 - x^3)^2), {x, 0, 50}], x] (* G. C. Greubel, Oct 16 2017 *)
LinearRecurrence[{4,-6,6,-9,12,-9,6,-6,4,-1},{1,4,20,68,175,392,786,1440,2475,4036},40] (* Harvey P. Dale, Apr 22 2019 *)
-
{a(n)=polcoeff(truncate(Ser([1,2,11,26,30,26,17,6,1]))/((1-x)^2*(1-x^2)^2*(1-x^3)^2 +x*O(x^n)),n)}
Original entry on oeis.org
1, 5, 39, 175, 618, 1764, 4420, 9900, 20439, 39325, 71603, 124215, 207076, 333200, 520272, 790704, 1173805, 1705725, 2432375, 3409175, 4704846, 6400900, 8596484, 11407500, 14972643, 19452069, 25034835, 31936975, 40410504, 50740800, 63257408, 78330560
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-4,-4,12,-12,4,12,-22,12,4,-12,12,-4,-4,4,-1).
-
CoefficientList[Series[(1 + 3*x + 28*x^2 + 94*x^3 + 240*x^4 + 440*x^5 + 679*x^6 + 839*x^7 + 887*x^8 + 757*x^9 + 550*x^10 + 314*x^11 + 148*x^12 + 48*x^13 + 11*x^14 + x^15)/((1 - x)^2*(1 - x^2)^2*(1 - x^3)^2*(1 - x^4)^2), {x, 0, 50}], x] (* G. C. Greubel, Oct 16 2017 *)
LinearRecurrence[{4,-4,-4,12,-12,4,12,-22,12,4,-12,12,-4,-4,4,-1},{1,5,39,175,618,1764,4420,9900,20439,39325,71603,124215,207076,333200,520272,790704},40] (* Harvey P. Dale, Feb 04 2023 *)
-
{a(n)=polcoeff(truncate(Ser([1,3,28,94,240,440,679,839,887,757,550,314,148,48,11,1]))/ ((1-x)^2*(1-x^2)^2*(1-x^3)^2*(1-x^4)^2 +x*O(x^n)),n)}
Original entry on oeis.org
1, 6, 63, 392, 1764, 6352, 19404, 52272, 127413, 286286, 601203, 1192464, 2252432, 4078368, 7116336, 12018704, 19718181, 31521798, 49228487, 75274584, 112911880, 166423400, 241382700, 344962800, 486301725, 676932006, 931282191, 1267259168
Offset: 0
-
CoefficientList[Series[(1 + 4*x + 50*x^2 + 262*x^3 + 930*x^4 + 2566*x^5 + 5795*x^6 + 11156*x^7 + 18699*x^8 + 27712*x^9 + 36699*x^10 + 43696*x^11 + 46988*x^12 + 45696*x^13 + 40167*x^14 + 31828*x^15 + 22603*x^16 + 14268*x^17 + 7899*x^18 + 3762*x^19 + 1498*x^20 + 474*x^21 + 110*x^22 + 16*x^23 + x^24)/((1 - x)^2*(1 - x^2)^2*(1 - x^3)^2*(1 - x^4)^2*(1 - x^5)^2), {x, 0, 50}], x] (* G. C. Greubel, Oct 16 2017 *)
-
{a(n)=polcoeff(truncate(Ser([1,4,50,262,930,2566,5795,11156,18699,27712, 36699,43696,46988,45696,40167,31828,22603,14268,7899,3762,1498,474,110,16,1])) /((1-x)^2*(1-x^2)^2*(1-x^3)^2*(1-x^4)^2*(1-x^5)^2 +x*O(x^n)),n)}
Original entry on oeis.org
1, 7, 100, 786, 4420, 19404, 71188, 226512, 644231, 1670015, 4008200, 9009728, 19146090, 38744496, 75117600, 140218218, 253051227, 443056383, 754838884, 1254576400, 2038689796, 3245256396, 5069041432, 7780827600, 11752298725
Offset: 0
-
{a(n)=polcoeff(truncate(Ser([1,5,85,581,2763,9987,29644,74546,164629, 324255,579250,946960,1429875,2003713,2620218,3205496,3679773,3967701, 4024087,3837087,3440204,2894878,2283089,1681653,1153208,731684,427027, 226843,108486,45806,16737,5073,1221,211,23,1])) / ((1-x)^2*(1-x^2)^2*(1-x^3)^2*(1-x^4)^2*(1-x^5)^2*(1-x^6)^2 +x*O(x^n)),n)}
A323724
a(n) = n*(2*(n - 2)*n + (-1)^n + 3)/4.
Original entry on oeis.org
0, 0, 2, 6, 20, 40, 78, 126, 200, 288, 410, 550, 732, 936, 1190, 1470, 1808, 2176, 2610, 3078, 3620, 4200, 4862, 5566, 6360, 7200, 8138, 9126, 10220, 11368, 12630, 13950, 15392, 16896, 18530, 20230, 22068, 23976, 26030, 28158, 30440, 32800, 35322, 37926, 40700
Offset: 0
- Stefano Spezia, Table of n, a(n) for n = 0..10000
- Christian Krause, LODA, an assembly language, a computational model and a tool for mining integer sequences
- Index entries for linear recurrences with constant coefficients, signature (2,1,-4,1,2,-1).
-
Flat(List([0..50], n->(1/2)*(-1 + n)^2*n - (-1 + n)*Int(n/2) + 2*(Int(n/2))^2));
-
[(1/2)*(-1 + n)^2*n - (-1 + n)*Floor(n/2) + 2*(Floor(n/2))^2: n in [0..50]];
-
a:=n->(1/2)*(-1 + n)^2*n - (-1 + n)*floor(n/2) + 2*(floor(n/2))^2: seq(a(n), n=0..50);
-
a[n_] := 1/2 (-1 + n)^2 n - (-1 + n) Floor[n/2] + 2 Floor[n/2]^2; Array[a, 50, 0];
Table[n (2 (n - 2) n + (-1)^n + 3)/4, {n, 0, 50}] (* Bruno Berselli, Feb 06 2019 *)
LinearRecurrence[{2,1,-4,1,2,-1},{0,0,2,6,20,40},50] (* Harvey P. Dale, Jan 13 2024 *)
-
makelist((1/2)*(-1 + n)^2*n - (-1 + n)*floor(n/2) + 2*(floor(n/2))^2, n, 0, 50);
-
a(n) = (1/2)*(-1 + n)^2*n - (-1 + n)*floor(n/2) + 2*(floor(n/2))^2;
-
T(i,j,n) = if (i %2, j + n*(i-1), n*i - j + 1);
a(n) = sum(k=1, n-1, T(k,k+1,n)); \\ Michel Marcus, Feb 06 2019
-
[int((1/2)*(-1 + n)**2*n - (-1 + n)*int(n/2) + 2*(int(n/2))**2) for n in range(0,50)]
A006009
Number of paraffins.
Original entry on oeis.org
4, 16, 48, 108, 216, 384, 640, 1000, 1500, 2160, 3024, 4116, 5488, 7168, 9216, 11664, 14580, 18000, 22000, 26620, 31944, 38016, 44928, 52728, 61516, 71344, 82320, 94500, 108000, 122880, 139264, 157216, 176868, 198288, 221616, 246924, 274360, 304000, 336000
Offset: 1
- S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
- S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926. (Annotated scanned copy)
- Index entries for linear recurrences with constant coefficients, signature (3,-1,-5,5,1,-3,1).
-
a:= n-> (Matrix([[0$4,4,16,48,108]]). Matrix(8, (i,j)-> if (i=j-1) then 1 elif j=1 then [4,-4,-4,10,-4,-4,4,-1][i] else 0 fi)^n)[1,1]: seq(a(n), n=1..40); # Alois P. Heinz, Aug 13 2008
-
a[n_] := 1/16*(2*n^4+12*n^3+24*n^2+2*(9-(-1)^n)*n-3*(-1)^n+3); Array[a, 40] (* Jean-François Alcover, Mar 17 2014 *)
A005999
Number of paraffins.
Original entry on oeis.org
1, 2, 6, 11, 23, 38, 64, 95, 141, 194, 266, 347, 451, 566, 708, 863, 1049, 1250, 1486, 1739, 2031, 2342, 2696, 3071, 3493, 3938, 4434, 4955, 5531, 6134, 6796, 7487, 8241, 9026, 9878, 10763, 11719, 12710, 13776, 14879, 16061, 17282, 18586, 19931, 21363, 22838, 24404, 26015, 27721, 29474, 31326, 33227, 35231, 37286
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Enrique Pérez Herrero, Table of n, a(n) for n = 1..5000
- S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926.
- S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926. (Annotated scanned copy)
- Index entries for linear recurrences with constant coefficients, signature (2, 1, -4, 1, 2, -1).
-
[1+Floor((n-1)/2)+2*(Binomial(n+1,3)-Binomial(Floor((n+1)/2),3)-Binomial(Ceiling((n+1)/2),3))-(n-1)^2 : n in [1..50]]; // Wesley Ivan Hurt, Sep 16 2014
-
A005999:=n->1+floor((n-1)/2)+2*(binomial(n+1,3)-binomial(floor((n+1)/2),3)-binomial(ceil((n+1)/2),3))-(n-1)^2: seq(A005999(n), n=1..40); # Wesley Ivan Hurt, Sep 16 2014
-
A005997[n_] := 1 + Floor[(n-1)/2] + 2*(Binomial[n+1,3] -Binomial[Floor[(n+1)/2],3] - Binomial[Ceiling[(n+1)/2],3]); A005999[n_] := A005997[n] - (n-1)^2; Array[A005999, 100] (* Enrique Pérez Herrero, Apr 22 2012 *)
-
Vec( (x^5+2*x^4+x^3+x^2+1)/(-1+x)^2/(-1+x^2)^2 + O(x^66) ) \\ Joerg Arndt, Sep 16 2014
Showing 1-9 of 9 results.
Comments