cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A005994 Alkane (or paraffin) numbers l(7,n).

Original entry on oeis.org

1, 3, 9, 19, 38, 66, 110, 170, 255, 365, 511, 693, 924, 1204, 1548, 1956, 2445, 3015, 3685, 4455, 5346, 6358, 7514, 8814, 10283, 11921, 13755, 15785, 18040, 20520, 23256, 26248, 29529, 33099, 36993, 41211, 45790, 50730, 56070, 61810, 67991
Offset: 0

Views

Author

N. J. A. Sloane, Winston C. Yang (yang(AT)math.wisc.edu)

Keywords

Comments

Equals A000217 (1, 3, 6, 10, 15, ...) convolved with A193356 (1, 0, 3, 0, 5, ...). - Gary W. Adamson, Feb 16 2009
F(1,4,n) is the number of bracelets with 1 blue, 4 red and n black beads. If F(1,4,1)=3 and F(1,4,2)=9 taken as a base;
F(1,4,n) = n(n+1)(n+2)/6+F(1,2,n) + F(1,4,n-2). [F(1,2,n) is the number of bracelets with 1 blue, 2 red and n black beads. If F(1,2,1)=2 and F(1,2,2)=4 taken as a base F(1,2,n)=n+1+F(1,2,n-2)]. - Ata Aydin Uslu and Hamdi G. Ozmenekse, Jan 11 2012
a(A254338(n)) = 6 for n > 0. - Reinhard Zumkeller, Feb 27 2015

References

  • S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A006009, A005997, A005993 (first differences).

Programs

  • Haskell
    --  Following Gary W. Adamson.
    import Data.List (inits, intersperse)
    a005994 n = a005994_list !! n
    a005994_list = map (sum . zipWith (*) (intersperse 0 [1, 3 ..]) . reverse) $
                       tail $ inits $ tail a000217_list
    -- Reinhard Zumkeller, Feb 27 2015
  • Maple
    a:= n -> (Matrix([[1, 0$4, 1, 3]]). Matrix(7, (i,j)-> if (i=j-1) then 1 elif j=1 then [3, -1, -5, 5, 1, -3, 1][i] else 0 fi)^n)[1,1]: seq (a(n), n=0..40); # Alois P. Heinz, Jul 31 2008
  • Mathematica
    LinearRecurrence[{3,-1,-5,5,1,-3,1},{1,3,9,19,38,66,110},50] (* or *) CoefficientList[Series[(1+x^2)/((1-x)^3(1-x^2)^2),{x,0,50}],x] (* Harvey P. Dale, May 02 2011 *)
    nn=45;With[{a=Accumulate[Range[nn]],b=Riffle[Range[1,nn,2],0]}, Flatten[ Table[ListConvolve[Take[a,n],Take[b,n]],{n,nn}]]] (* Harvey P. Dale, Nov 11 2011 *)
  • PARI
    {a(n)=if(n<-4, n=-5-n); polcoeff( (1+x^2)/((1-x)^3*(1-x^2)^2)+x*O(x^n), n)} /* Michael Somos, Mar 08 2007 */
    

Formula

G.f.: (1+x^2)/((1-x)^3*(1-x^2)^2) = (1+x^2)/((1-x)^5*(1+x)^2).
l(c, r) = 1/2 C(c+r-3, r) + 1/2 d(c, r), where d(c, r) is C((c + r - 3)/2, r/2) if c is odd and r is even, 0 if c is even and r is odd, C((c + r - 4)/2, r/2) if c is even and r is even, C((c + r - 4)/2, (r - 1)/2) if c is odd and r is odd.
a(-5-n)=a(n). - Michael Somos, Mar 08 2007
Euler transform of length 4 sequence [3, 3, 0, -1]. - Michael Somos, Mar 08 2007
a(n) = 3a(n-1) - a(n-2) - 5a(n-3) + 5a(n-4) + a(n-5) - 3a(n-6) + a(n-7), with a(0)=1, a(1)=3, a(2)=9, a(4)=19, a(5)=38, a(6)=66, a(7)=110. - Harvey P. Dale, May 02 2011
a(n) = A006009(n)/2 - A000332(n+4) = ((1/2)*Sum_{i=1..n+1} (i+1)*floor((i+1)^2/2)) - binomial(n+4,4). - Enrique Pérez Herrero, May 11 2012
a(n) = (1/48)*(n+1)*(n+3)*((n+2)*(n+4)+3)+1/32*(2*n+5)*(1+(-1)^n). - Yosu Yurramendi, Jun 20 2013
Conjecture: a(n)+a(n+1) = A203286(n+1). - R. J. Mathar, Mar 08 2025

A007009 Number of 3-voter voting schemes with n linearly ranked choices.

Original entry on oeis.org

1, 4, 12, 27, 54, 96, 160, 250, 375, 540, 756, 1029, 1372, 1792, 2304, 2916, 3645, 4500, 5500, 6655, 7986, 9504, 11232, 13182, 15379, 17836, 20580, 23625, 27000, 30720, 34816, 39304, 44217, 49572, 55404, 61731, 68590, 76000, 84000, 92610, 101871, 111804
Offset: 1

Views

Author

Keywords

Comments

With a(0) = 0 nontrivial integer solutions of (x + y)^3 = (x - y)^4. If x = a(n) then y = a(n + (-1)^n). - Thomas Scheuerle, Mar 22 2023

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A034828 (first differences).

Programs

  • Magma
    I:=[1,4,12,27,54,96,160]; [n le 7 select I[n] else 3*Self(n-1)-Self(n-2)- 5*Self(n-3)+5*Self(n-4)+Self(n-5)-3*Self(n-6)+Self(n-7): n in [1..50]]; // Vincenzo Librandi, Sep 21 2015
    
  • Maple
    a:= n-> (Matrix([[0$4, 1, 4, 12, 27]]). Matrix(8, (i, j)-> `if`(i=j-1, 1, `if`(j=1, [4, -4, -4, 10, -4, -4, 4, -1][i], 0)))^n)[1, 1]:
    seq(a(n), n=1..40);  # Alois P. Heinz, Aug 13 2008
  • Mathematica
    LinearRecurrence[{3, -1, -5, 5, 1, -3, 1}, {1, 4, 12, 27, 54, 96, 160}, 50] (* Vincenzo Librandi, Sep 21 2015 *)
  • PARI
    Vec(x*(1-x^3)/((1-x)^4*(1-x^2)^2) + O(x^100)) \\ Colin Barker, Jan 07 2016

Formula

G.f.: x*(1-x^3)/((1-x)^4*(1-x^2)^2) = x*(1+x+x^2)/((1-x)^5*(1+x)^2).
a(n) = (1/2)*Sum_{k=1..n+1} k*floor(k/2)*ceiling(k/2). - Vladeta Jovovic, Apr 29 2006
a(n) = A006009(n)/4.
a(n) = A007590(n+2)*A007590(n+1)/8. - Richard R. Forberg, Dec 03 2013
For n > 1, a(n) = A000332(n+3) - A002624(n-2). - Antal Pinter, Sep 20 2015
a(n) = (n^4 + 6*n^3 + 12*n^2 + 8*n)/32 for n even; a(n) = (n^4 + 6*n^3 + 12*n^2 + 10*n + 3)/32 for n odd. - Colin Barker, Jan 07 2016

Extensions

More terms from James Sellers, Sep 08 2000
Showing 1-2 of 2 results.