cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006004 a(n) = C(n+2,3) + C(n,3) + C(n-1,3).

Original entry on oeis.org

1, 4, 11, 25, 49, 86, 139, 211, 305, 424, 571, 749, 961, 1210, 1499, 1831, 2209, 2636, 3115, 3649, 4241, 4894, 5611, 6395, 7249, 8176, 9179, 10261, 11425, 12674, 14011, 15439, 16961, 18580, 20299, 22121, 24049, 26086, 28235, 30499, 32881, 35384, 38011, 40765
Offset: 1

Views

Author

Keywords

Comments

Equals binomial transform of [1, 3, 4, 3, 0, 0, 0, ...]. Example: a(4) = 25 = (1, 3, 3, 1) dot (1, 3, 4, 3) = (1 + 9 + 12 + 3). - Gary W. Adamson, Jul 25 2008

References

  • S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Maple
    A006004:=n->(n^3 - 2*n^2 + 5*n - 2)/2; seq(A006004(n), n=1..50); # Wesley Ivan Hurt, Feb 09 2014
  • Mathematica
    Table[Binomial[n+2,3]+Binomial[n,3]+Binomial[n-1,3],{n,50}] (* or *) LinearRecurrence[{4,-6,4,-1},{1,4,11,25},50] (* Harvey P. Dale, Jun 15 2011 *)
  • PARI
    a(n) = (n^3 - 2*n^2 + 5*n - 2)/2 \\ Charles R Greathouse IV, Feb 10 2017

Formula

a(n) = (n^3 - 2n^2 + 5n - 2)/2.
G.f.: (x^3+x^2+1)/(x-1)^4. - Harvey P. Dale, Jun 15 2011
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4), with a(0)=1, a(1)=4, a(2)=11, a(3)=25. - Harvey P. Dale, Jun 15 2011

Extensions

Terms added by Wesley Ivan Hurt, Feb 09 2014