A006009 Number of paraffins.
4, 16, 48, 108, 216, 384, 640, 1000, 1500, 2160, 3024, 4116, 5488, 7168, 9216, 11664, 14580, 18000, 22000, 26620, 31944, 38016, 44928, 52728, 61516, 71344, 82320, 94500, 108000, 122880, 139264, 157216, 176868, 198288, 221616, 246924, 274360, 304000, 336000
Offset: 1
References
- S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
- S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926. (Annotated scanned copy)
- Index entries for linear recurrences with constant coefficients, signature (3,-1,-5,5,1,-3,1).
Programs
-
Maple
a:= n-> (Matrix([[0$4,4,16,48,108]]). Matrix(8, (i,j)-> if (i=j-1) then 1 elif j=1 then [4,-4,-4,10,-4,-4,4,-1][i] else 0 fi)^n)[1,1]: seq(a(n), n=1..40); # Alois P. Heinz, Aug 13 2008
-
Mathematica
a[n_] := 1/16*(2*n^4+12*n^3+24*n^2+2*(9-(-1)^n)*n-3*(-1)^n+3); Array[a, 40] (* Jean-François Alcover, Mar 17 2014 *)
Formula
a(n) = 2*(A005994(n) + binomial(n, 4)).
G.f.: 4*x*(1-x^3) / ((1-x)^4*(1-x^2)^2). - Alois P. Heinz, Aug 13 2008
a(n) = Sum_{i=1..n} i*floor(i^2/2). - Enrique Pérez Herrero, Mar 10 2012