cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006014 a(n+1) = (n+1)*a(n) + Sum_{k=1..n-1} a(k)*a(n-k).

Original entry on oeis.org

1, 2, 7, 32, 178, 1160, 8653, 72704, 679798, 7005632, 78939430, 965988224, 12762344596, 181108102016, 2748049240573, 44405958742016, 761423731533286, 13809530704348160, 264141249701936818, 5314419112717217792, 112201740111374359516, 2480395343617443024896
Offset: 1

Views

Author

Keywords

Examples

			G.f. = x + 2*x^2 + 7*x^3 + 32*x^4 + 178*x^5 + 1160*x^6 + 8653*x^7 + 72704*x^8 + ...
		

References

  • D. E. Knuth, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Similar recurrences: A124758, A243499, A284005, A329369, A341392.

Programs

  • Mathematica
    Nest[Append[#1, #1[[-1]] (#2 + 1) + Total@ Table[#1[[k]] #1[[#2 - k]], {k, #2 - 1}]] & @@ {#, Length@ #} &, {1}, 17] (* Michael De Vlieger, Aug 22 2018 *)
    (* or *)
    a[1] = 1; a[n_] := a[n] = n a[n-1] + Sum[a[k] a[n-1-k], {k, n-2}]; Array[a, 18] (* Giovanni Resta, Aug 23 2018 *)
  • PARI
    {a(n) = local(A); if( n<1, 0, A = vector(n); A[1] = 1; for( k=2, n, A[k] = k * A[k-1] + sum( j=1, k-2, A[j] * A[k-1-j])); A[n])} /* Michael Somos, Jul 24 2011 */
    
  • Python
    from sage.all import *
    @CachedFunction
    def a(n): # a = A006014
        if n<5: return (pow(5,n-1) + 3)//4
        else: return n*a(n-1) + 2*sum(a(k)*a(n-k-1) for k in range(1,(n//2))) + (n%2)*pow(a((n-1)//2),2)
    print([a(n) for n in range(1,61)]) # G. C. Greubel, Jan 10 2025

Formula

G.f. A(x) satisfies A(x) = x * (1 + A(x) + A(x)^2 + x * A'(x)). - Michael Somos, Jul 24 2011
Conjecture: a(n) = Sum_{k=0..2^(n-1) - 1} b(k) for n > 0 where b(2n+1) = b(n), b(2n) = b(n) + b(n - 2^f(n)) + b(2n - 2^f(n)) + b(A025480(n-1)) for n > 0 with b(0) = b(1) = 1 and where f(n) = A007814(n). - Mikhail Kurkov, Nov 19 2021
a(n) ~ cosh(sqrt(3)*Pi/2) * n! / Pi = A073017 * n!. - Vaclav Kotesovec, Nov 21 2024