A006050 Smallest number of additive persistence n.
0, 10, 19, 199, 19999999999999999999999
Offset: 0
References
- Meimaris Antonios, On the additive persistence of a number in base p, Preprint, 2015.
- H. J. Hindin, The additive persistence of a number, J. Rec. Math., 7 (No. 2, 1974), 134-135.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Shyam Sunder Gupta, Digital Root Wonders, Exploring the Beauty of Fascinating Numbers, Springer (2025) Ch. 1, 1-28.
- N. J. A. Sloane, The persistence of a number, J. Recreational Math., 6 (1973), 97-98.
- Eric Weisstein's World of Mathematics, Additive Persistence.
Programs
-
Mathematica
lst = {0, 10}; Do[AppendTo[lst, 2*10^((lst[[-1]] - 1)/9) - 1], {3}]; lst (* Arkadiusz Wesolowski, Oct 17 2012 *) Join[{0},NestList[2*10^((#-1)/9)-1&,10,3]] (* Harvey P. Dale, May 08 2020 *)
Formula
For n>1 a(n) = 2*10^((a(n-1)-1)/9)-1.
Comments