A006062 Star-hex numbers.
1, 37, 1261, 42841, 1455337, 49438621, 1679457781, 57052125937, 1938092824081, 65838103892821, 2236557439531837, 75977114840189641, 2580985347126915961, 87677524687474953037, 2978454854027021487301, 101179787512231255615201, 3437134320561835669429537
Offset: 1
References
- Martin Gardner, Time Travel and Other Mathematical Bewilderments. Freeman, NY, 1988, p. 22.
- Harvey J. Hindin, Stars, hexes, triangular numbers and Pythagorean triples, J. Rec. Math., 16 (1983/1984), 191-193.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Paolo Xausa, Table of n, a(n) for n = 1..650
- Harvey J. Hindin, Stars, hexes, triangular numbers and Pythagorean triples, J. Rec. Math., 16 (1983/1984), 191-193. (Annotated scanned copy)
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Index entries for linear recurrences with constant coefficients, signature (35,-35,1).
Programs
-
Maple
A006062:=-(z+1)**2/(z-1)/(z**2-34*z+1); [Simon Plouffe in his 1992 dissertation for offset zero.]
-
Mathematica
LinearRecurrence[{35, -35, 1}, {1, 37, 1261}, 20] (* Paolo Xausa, Sep 02 2024 *)
Formula
a(n) = 34*a(n-1) - a(n-2) + 4.
G.f.: -x*(x + 1)^2/(x - 1)/(x^2 - 34*x + 1). [from Simon Plouffe, see Maple code].
From Charlie Marion, Aug 03 2005: (Start)