cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006079 Number of asymmetric planted projective plane trees with n+1 nodes; bracelets (reversible necklaces) with n black beads and n-1 white beads.

Original entry on oeis.org

1, 1, 0, 1, 4, 16, 56, 197, 680, 2368, 8272, 29162, 103544, 370592, 1335504, 4844205, 17672400, 64810240, 238795040, 883585406, 3281967832, 12232957152, 45740929104, 171529130786, 644950721584, 2430970600576, 9183671335776, 34766765428852, 131873955816880
Offset: 1

Views

Author

Keywords

Comments

"DHK[ n ](2n-1)" (bracelet, identity, unlabeled, n parts, evaluated at 2n) transform of 1,1,1,1,...
For n > 2, half the number of asymmetric Dyck (n-1)-paths. E.g., the two asymmetric 3-paths are UDUUDD and UUDDUD, so a(4) = 2/2 = 1. - David Scambler, Aug 23 2012

Examples

			For the asymmetric planted projective plane trees sequence we have a(5) = 4, a(6) = 16, a(7) = 56, ...
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Equals half the difference of A000108 and A001405.

Programs

  • Magma
    [1,1] cat [(Catalan(n) - Binomial(n, Floor(n/2)))/2: n in [2..40]]; // Vincenzo Librandi, Feb 16 2015
  • Mathematica
    a[1] = a[2] = 1; a[n_] := (CatalanNumber[n-1] - Binomial[n-1, Floor[(n-1)/2]])/2; Table[ a[n], {n, 1, 26}] (* Jean-François Alcover, Mar 09 2012, after David Callan *)

Formula

Let c(x) = (1-sqrt(1-4*x))/(2*x) = g.f. for Catalan numbers (A000108), let d(x) = x/(1-x-x^2*c(x^2)) = g.f. for A001405. Then g.f. for the asymmetric planted projective plane trees sequence is (x*c(x)-d(x))/2 (the initial terms from this version are slightly different).
a(n+1) = (CatalanNumber(n) - binomial(n,floor(n/2)))/2 (for n>=3). - David Callan, Jul 14 2006

Extensions

Alternative description and more terms from Christian G. Bower