cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006081 Number of line-rooted projective plane trees with n nodes.

Original entry on oeis.org

1, 1, 3, 6, 17, 44, 133, 404, 1319, 4392, 15114, 52796, 187410, 671848, 2430509, 8852584, 32438603, 119463056, 441926206, 1641246060, 6117011262, 22871513128, 85766691938, 322479555096, 1215493792902, 4591852445104, 17383416640308, 65937045017304
Offset: 2

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • P. K. Stockmeyer, The charm bracelet problem and its applications, pp. 339-349 of Graphs and Combinatorics (Washington, Jun 1973), Ed. by R. A. Bari and F. Harary. Lect. Notes Math., Vol. 406. Springer-Verlag, 1974.

Crossrefs

Cf. A000108, A001405. - Alois P. Heinz, Feb 03 2009

Programs

  • Maple
    b:= proc(n) option remember; binomial(n, floor(n/2)) end: c:= proc(n) option remember; binomial(2*n, n) /(n+1) end: a:= proc(m) local n; n:=m-2; (add(c(k)*c(n-k) +b(k)*b(n-k), k=0..n)) /4 +`if`(irem(n,2)=0, c(n/2)/2, 0) end: seq(a(n), n=2..30); # Alois P. Heinz, Feb 03 2009
  • Mathematica
    b[n_] := Binomial[n, Floor[n/2]]; c[n_] := Binomial[2n, n]/(n+1); a[m_] := (n = m-2; Sum[c[k]*c[n-k] + b[k]*b[n-k], {k, 0, n}]/4 + If[Mod[n, 2] == 0, c[n/2]/2, 0]); Table[a[n], {n,2,30}] (* Jean-François Alcover, Jul 20 2011, after Alois P. Heinz *)

Formula

Stockmeyer gives g.f.
a(n) ~ 2^(2*n-4) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Sep 12 2014

Extensions

More terms from Alois P. Heinz, Feb 03 2009