A006082
Number of labeled projective plane trees (or "flat" trees) with n nodes.
Original entry on oeis.org
1, 1, 1, 2, 3, 6, 12, 27, 65, 175, 490, 1473, 4588, 14782, 48678, 163414, 555885, 1913334, 6646728, 23278989, 82100014, 291361744, 1039758962, 3729276257, 13437206032, 48620868106, 176611864312, 643834562075, 2354902813742, 8640039835974, 31791594259244
Offset: 1
- R. W. Robinson, personal communication.
- R. W. Robinson, Efficiency of power series operations for graph counting, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1982.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Andrew Howroyd, Table of n, a(n) for n = 1..500
- David Feldman, Counting plane trees, Unpublished manuscript, 1992. (Annotated scanned copy)
- Richard Kapolnai, Gabor Domokos, and Timea Szabo, Generating spherical multiquadrangulations by restricted vertex splittings and the reducibility of equilibrium classes, Periodica Polytechnica Electrical Engineering, 56(1):11-10, 2012. Also arXiv:1206.1698 [cs.DM], 2012. See row 2 of Table 1.
- T. S. Motzkin, Relations between hypersurface cross ratios and a combinatorial formula for partitions of a polygon, for permanent preponderance and for non-associative products, Bull. Amer. Math. Soc., 54 (1948), 352-360. [The sequence is mentioned on page 355, but because of a miscalculation it is given, incorrectly, as 1, 1, 1, 2, 3, 6, 12, 25. Thanks to _David Broadhurst_ for this information. - _N. J. A. Sloane_, Apr 06 2022]
- Feng Rong, A note on the topological classification of complex polynomial differential equations with only centre singularities, Journal of Difference Equations and Applications, Volume 18, Issue 11, 2012. - From _N. J. A. Sloane_, Dec 27 2012
- P. K. Stockmeyer, The charm bracelet problem and its applications, pp. 339-349 of Graphs and Combinatorics (Washington, Jun 1973), Ed. by R. A. Bari and F. Harary. Lect. Notes Math., Vol. 406. Springer-Verlag, 1974.
- P. J. Stockmeyer, The charm bracelet problem and its applications, pp. 339-349 of Graphs and Combinatorics (Washington, Jun 1973), Ed. by R. A. Bari and F. Harary. Lect. Notes Math., Vol. 406. Springer-Verlag, 1974. [Scanned annotated and corrected copy]
- Index entries for sequences related to trees
-
u[n_, k_, r_] := (r*Binomial[k*n + r, n]/(k*n + r));
e[n_, k_] := Sum[ u[j, k, 1 + (n - 2*j)*k/2], {j, 0, n/2}]
c[n_, k_] := If[n == 0, 1, (DivisorSum[n, EulerPhi[n/#]*Binomial[k*#, #]&] + DivisorSum[GCD[n-1, k], EulerPhi[#]*Binomial[n*k/#, (n-1)/#]&])/(k*n) - Binomial[k*n, n]/(n*(k - 1) + 1)];
T[n_, k_] := (1/2)*(c[n, k] + If[n == 0, 1, If[OddQ[k], If[OddQ[n], 2*u[ Quotient[n, 2], k, (k + 1)/2], u[n/2, k, 1] + u[n/2 - 1, k, k]], e[n, k] + If[OddQ[n], u[Quotient[n, 2], k, k/2]]]/2]) /. Null -> 0;
a[n_] := T[n, 2];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jun 14 2018, after Andrew Howroyd and A303929 *)
-
\\ from David Broadhurst, Apr 06 2022, added by N. J. A. Sloane, Apr 06 2022
{A006082(n)=my(c(n)=binomial(2*n,n));
if(n<2,1,n--;(c(n)+if(n%2,2*n*(n+2),(n+1)^2)*c(n\2)
+(n+1)*sumdiv(n,d,if(d>2,eulerphi(d)*c(n/d))))/(4*n*(n+1)));}
A006079
Number of asymmetric planted projective plane trees with n+1 nodes; bracelets (reversible necklaces) with n black beads and n-1 white beads.
Original entry on oeis.org
1, 1, 0, 1, 4, 16, 56, 197, 680, 2368, 8272, 29162, 103544, 370592, 1335504, 4844205, 17672400, 64810240, 238795040, 883585406, 3281967832, 12232957152, 45740929104, 171529130786, 644950721584, 2430970600576, 9183671335776, 34766765428852, 131873955816880
Offset: 1
For the asymmetric planted projective plane trees sequence we have a(5) = 4, a(6) = 16, a(7) = 56, ...
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 1..200
- C. G. Bower, Transforms (2).
- Z. M. Himwich and N. A. Rosenberg, Roadblocked monotonic paths and the enumeration of coalescent histories for non-matching caterpillar gene trees and species trees, arXiv:1901.04465 [qbio.PE], 2019; Adv. Appl. Math. 113 (2020), 101939. (Table 1 shows twice this sequence.)
- P. K. Stockmeyer, The charm bracelet problem and its applications, pp. 339-349 of Graphs and Combinatorics (Washington, Jun 1973), Ed. by R. A. Bari and F. Harary. Lect. Notes Math., Vol. 406. Springer-Verlag, 1974.
- P. J. Stockmeyer, The charm bracelet problem and its applications, pp. 339-349 of Graphs and Combinatorics (Washington, Jun 1973), Ed. by R. A. Bari and F. Harary. Lect. Notes Math., Vol. 406. Springer-Verlag, 1974. [Scanned annotated and corrected copy]
- Index entries for sequences related to bracelets
- Index entries for sequences related to rooted trees
- Index entries for sequences related to trees
-
[1,1] cat [(Catalan(n) - Binomial(n, Floor(n/2)))/2: n in [2..40]]; // Vincenzo Librandi, Feb 16 2015
-
a[1] = a[2] = 1; a[n_] := (CatalanNumber[n-1] - Binomial[n-1, Floor[(n-1)/2]])/2; Table[ a[n], {n, 1, 26}] (* Jean-François Alcover, Mar 09 2012, after David Callan *)
A006080
Number of rooted projective plane trees with n nodes.
Original entry on oeis.org
1, 1, 2, 4, 9, 21, 56, 155, 469, 1480, 4882, 16545, 57384, 202060, 720526, 2593494, 9408469, 34350507, 126109784, 465200333, 1723346074, 6408356210, 23911272090, 89495909409, 335916761128, 1264114452996, 4768464309416, 18027250459483, 68291947831046, 259200707489634
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- P. K. Stockmeyer, The charm bracelet problem and its applications, pp. 339-349 of Graphs and Combinatorics (Washington, Jun 1973), Ed. by R. A. Bari and F. Harary. Lect. Notes Math., Vol. 406. Springer-Verlag, 1974.
-
a[n_] := Sum[ EulerPhi[(n-1)/k]*(Binomial[2*k, k]/(2*(n-1))), {k, Divisors[n-1]}]/2 + 2^(n-3); a[1] = 1; Table[a[n], {n, 1, 27}] (* From Jean-François Alcover, Apr 11 2012, from formula *)
-
C(n, k)=binomial(n, k);
A003239(n) = if(n<=0, n==0, sumdiv(n, d, eulerphi(n/d) * C(2*d, d)) / (2*n) );
a(n) = if ( n<=1, 1, A003239(n)/2 + 2^(n-2) );
/* Joerg Arndt, Jan 25 2013 */
-
from sympy import binomial as C, totient, divisors
def a003239(n): return 1 if n<2 else sum([totient(n//d)*C(2*d, d) for d in divisors(n)])/(2*n)
def a(n): return 1 if n<2 else a003239(n)/2 + 2**(n - 2) # Indranil Ghosh, Apr 24 2017
A224850
Number T(n,k) of tilings of an n X k rectangle using integer-sided square tiles reduced for symmetry, where the orbits under the symmetry group of the rectangle, D2, have 1 element; triangle T(n,k), k >= 1, 0 <= n < k, read by columns.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 2, 3, 1, 1, 5, 2, 12, 6, 1, 1, 3, 3, 5, 7, 17, 1, 1, 8, 3, 25, 11, 106, 44
Offset: 1
The triangle is:
n\k 1 2 3 4 5 6 7 8 ...
.
0 1 1 1 1 1 1 1 1 ...
1 1 1 1 1 1 1 1 ...
2 1 3 2 5 3 8 ...
3 1 2 2 3 3 ...
4 3 12 5 25 ...
5 6 7 11 ...
6 17 106 ...
7 44 ...
...
T(3,5) = 2 because there are 2 different tilings of the 3 X 5 rectangle by integer-sided squares, where any sequence of group D2 operations will only transform each tiling into itself. Group D2 operations are:
. the identity operation
. rotation by 180 degrees
. reflection about a horizontal axis through the center
. reflection about a vertical axis through the center
The tilings are:
._________. ._________.
|_|_|_|_|_| |_| |_|
|_|_|_|_|_| |_| |_|
|_|_|_|_|_| |_|_____|_|
A384967
Number of unsensed simple planar maps with n vertices and 2 faces.
Original entry on oeis.org
0, 0, 1, 2, 7, 22, 76, 271, 1001, 3765, 14381, 55450, 214880, 835663, 3255652, 12698352, 49559793, 193513944, 755852101, 2953214386, 11541989533, 45123241746, 176465152051, 690340349398, 2701579878022, 10576116931462, 41418132927403, 162259989848094, 635899817853002, 2492993368347594
Offset: 1
-
G1(n)={my(g=(1-sqrt(1-4*x^2 + O(x^(n+2))))/(2*x^2)); ((1 + x/(1-x-x^2*g)^2)^2/(1 - x^2*g^2) - 1)/2 + 1/(1 - x*g) - 1 - x*(g^2/(1 - x*g)^2 + g) - x^2*(g^4/(1 - x*g)^4 + 3*g^2)/2}
G2(n)={my(c(d)=(1-sqrt(1-4*x^d + O(x*x^(n+d))))/(2*x^d)); sum(k=1, n, my(m=1+k%2); -(log(2 - c(k)) + log(1 - x^k*c(m*k)^(2/m)))*eulerphi(k)/k, O(x*x^n)) - x*(c(1)^2 + c(2)) - x^2*(c(1)^4 + 3*c(2)^2)/2}
seq(n)={Vec(G1(n)+G2(n), -n)/4}
Showing 1-5 of 5 results.
Comments