cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A006082 Number of labeled projective plane trees (or "flat" trees) with n nodes.

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 12, 27, 65, 175, 490, 1473, 4588, 14782, 48678, 163414, 555885, 1913334, 6646728, 23278989, 82100014, 291361744, 1039758962, 3729276257, 13437206032, 48620868106, 176611864312, 643834562075, 2354902813742, 8640039835974, 31791594259244
Offset: 1

Views

Author

Keywords

Comments

Also, the number of noncrossing partitions up to rotation and reflection composed of n-1 blocks of size 2. - Andrew Howroyd, May 03 2018

References

  • R. W. Robinson, personal communication.
  • R. W. Robinson, Efficiency of power series operations for graph counting, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1982.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=2 of A302828 and A303929.
Cf. A002995 (noncrossing partitions into pairs up to rotations only), A126120, A001405, A185100.

Programs

  • Mathematica
    u[n_, k_, r_] := (r*Binomial[k*n + r, n]/(k*n + r));
    e[n_, k_] := Sum[ u[j, k, 1 + (n - 2*j)*k/2], {j, 0, n/2}]
    c[n_, k_] := If[n == 0, 1, (DivisorSum[n, EulerPhi[n/#]*Binomial[k*#, #]&] + DivisorSum[GCD[n-1, k], EulerPhi[#]*Binomial[n*k/#, (n-1)/#]&])/(k*n) - Binomial[k*n, n]/(n*(k - 1) + 1)];
    T[n_, k_] := (1/2)*(c[n, k] + If[n == 0, 1, If[OddQ[k], If[OddQ[n], 2*u[ Quotient[n, 2], k, (k + 1)/2], u[n/2, k, 1] + u[n/2 - 1, k, k]], e[n, k] + If[OddQ[n], u[Quotient[n, 2], k, k/2]]]/2]) /. Null -> 0;
    a[n_] := T[n, 2];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jun 14 2018, after Andrew Howroyd and A303929 *)
  • PARI
    \\ from David Broadhurst, Apr 06 2022, added by N. J. A. Sloane, Apr 06 2022
    {A006082(n)=my(c(n)=binomial(2*n,n));
    if(n<2,1,n--;(c(n)+if(n%2,2*n*(n+2),(n+1)^2)*c(n\2)
    +(n+1)*sumdiv(n,d,if(d>2,eulerphi(d)*c(n/d))))/(4*n*(n+1)));}

Formula

a(n) = A006080(n) - A006081(n) + A126120(n-2). [Stockmeyer] [Corrected by Andrey Zabolotskiy, Apr 06 2021]
a(n) = (2 * A002995(n) + A126120(n-2) + A001405(n-1)) / 4 for n > 1. - Andrey Zabolotskiy, May 24 2018
There is a compact formula from David Broadhurst - see the Pari code - N. J. A. Sloane, Apr 06 2022.
a(n) ~ 2^(2*n-4) / (sqrt(Pi) * n^(5/2)). - Vaclav Kotesovec, Jun 01 2022

Extensions

a(25) and a(26) from Robert W. Robinson, Oct 17 2006
a(27) and beyond from Andrew Howroyd, May 03 2018

A006079 Number of asymmetric planted projective plane trees with n+1 nodes; bracelets (reversible necklaces) with n black beads and n-1 white beads.

Original entry on oeis.org

1, 1, 0, 1, 4, 16, 56, 197, 680, 2368, 8272, 29162, 103544, 370592, 1335504, 4844205, 17672400, 64810240, 238795040, 883585406, 3281967832, 12232957152, 45740929104, 171529130786, 644950721584, 2430970600576, 9183671335776, 34766765428852, 131873955816880
Offset: 1

Views

Author

Keywords

Comments

"DHK[ n ](2n-1)" (bracelet, identity, unlabeled, n parts, evaluated at 2n) transform of 1,1,1,1,...
For n > 2, half the number of asymmetric Dyck (n-1)-paths. E.g., the two asymmetric 3-paths are UDUUDD and UUDDUD, so a(4) = 2/2 = 1. - David Scambler, Aug 23 2012

Examples

			For the asymmetric planted projective plane trees sequence we have a(5) = 4, a(6) = 16, a(7) = 56, ...
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Equals half the difference of A000108 and A001405.

Programs

  • Magma
    [1,1] cat [(Catalan(n) - Binomial(n, Floor(n/2)))/2: n in [2..40]]; // Vincenzo Librandi, Feb 16 2015
  • Mathematica
    a[1] = a[2] = 1; a[n_] := (CatalanNumber[n-1] - Binomial[n-1, Floor[(n-1)/2]])/2; Table[ a[n], {n, 1, 26}] (* Jean-François Alcover, Mar 09 2012, after David Callan *)

Formula

Let c(x) = (1-sqrt(1-4*x))/(2*x) = g.f. for Catalan numbers (A000108), let d(x) = x/(1-x-x^2*c(x^2)) = g.f. for A001405. Then g.f. for the asymmetric planted projective plane trees sequence is (x*c(x)-d(x))/2 (the initial terms from this version are slightly different).
a(n+1) = (CatalanNumber(n) - binomial(n,floor(n/2)))/2 (for n>=3). - David Callan, Jul 14 2006

Extensions

Alternative description and more terms from Christian G. Bower

A066315 Number of aperiodic bracelets (or necklaces) with n red and blue beads such that the beads switch colors when bracelet is turned over.

Original entry on oeis.org

1, 1, 3, 7, 20, 51, 154, 460, 1476, 4860, 16544, 57321, 202059, 720370, 2593470, 9408000, 34350506, 126108252, 465200332, 1723341185, 6408356052, 23911255544, 89495909408, 335916703284, 1264114452975, 4768464107355
Offset: 1

Views

Author

Christian G. Bower, Dec 13 2001

Keywords

Programs

Formula

Moebius transform of A006080(n+1).

A115123 Number of imprimitive (periodic) bracelets (or necklaces) with n red and blue beads such that the beads switch colors when bracelet is turned over.

Original entry on oeis.org

0, 1, 1, 2, 1, 5, 1, 9, 4, 22, 1, 63, 1, 156, 24, 469, 1, 1532, 1, 4889, 158, 16546, 1, 57844, 21, 202061, 1480, 720533, 1, 2598406, 1, 9408469, 16548, 34350508, 175, 126167112, 1, 465200334, 202063, 1723346534, 1, 6409076632, 1, 23911272097, 2594970, 89495909410, 1
Offset: 1

Views

Author

Valery A. Liskovets, Jan 17 2006

Keywords

Comments

a(p)=1 for prime p.

Programs

Formula

a(n)=A006080(n+1) - A066315(n).

Extensions

More terms from Jean-François Alcover, Aug 28 2019
Showing 1-4 of 4 results.