cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A004111 Number of rooted identity trees with n nodes (rooted trees whose automorphism group is the identity group).

Original entry on oeis.org

0, 1, 1, 1, 2, 3, 6, 12, 25, 52, 113, 247, 548, 1226, 2770, 6299, 14426, 33209, 76851, 178618, 416848, 976296, 2294224, 5407384, 12780394, 30283120, 71924647, 171196956, 408310668, 975662480, 2335443077, 5599508648, 13446130438, 32334837886, 77863375126, 187737500013, 453203435319, 1095295264857, 2649957419351
Offset: 0

Views

Author

Keywords

Comments

The nodes are unlabeled.
There is a natural correspondence between rooted identity trees and finitary sets (sets whose transitive closure is finite); each node represents a set, with the children of that node representing the members of that set. When the set corresponding to an identity tree is written out using braces, there is one set of braces for each node of the tree; thus a(n) is also the number of sets that can be made using n pairs of braces. - Franklin T. Adams-Watters, Oct 25 2011
Shifts left under WEIGH transform. - Franklin T. Adams-Watters, Jan 17 2007
Is this the sequence mentioned in the middle of page 355 of Motzkin (1948)? - N. J. A. Sloane, Jul 04 2015. Answer from David Broadhurst, Apr 06 2022: The answer is No. Motzkin was considering a sequence asymptotic to Catalan(n)/(4*n), namely A006082, which begins 1, 1, 1, 2, 3, 6, 12, 27, ... but he miscalculated and got 1, 1, 1, 2, 3, 6, 12, 25, ... instead! - N. J. A. Sloane, Apr 06 2022

Examples

			The 2 identity trees with 4 nodes are:
     O    O
    / \   |
   O   O  O
       |  |
       O  O
          |
          O
These correspond to the sets {{},{{}}} and {{{{}}}}.
G.f.: x + x^2 + x^3 + 2*x^4 + 3*x^5 + 6*x^6 + 12*x^7 + 25*x^8 + 52*x^9 + ...
		

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 330.
  • S. R. Finch, Mathematical Constants, Cambridge, 2003, p. 301 and 562.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 64, Eq. (3.3.15); p. 80, Problem 3.10.
  • D. E. Knuth, Fundamental Algorithms, 3rd Ed., 1997, pp. 386-388.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    import Data.List (genericIndex)
    a004111 = genericIndex a004111_list
    a004111_list = 0 : 1 : f 1 [1] where
       f x zs = y : f (x + 1) (y : zs) where
                y = (sum $ zipWith (*) zs $ map g [1..]) `div` x
       g k = sum $ zipWith (*) (map (((-1) ^) . (+ 1)) $ reverse divs)
                               (zipWith (*) divs $ map a004111 divs)
                               where divs = a027750_row k
    -- Reinhard Zumkeller, Apr 29 2014
    
  • Maple
    A004111 := proc(n)
            spec := [ A, {A=Prod(Z,PowerSet(A))} ]:
            combstruct[count](spec, size=n) ;
    end proc:
    # second Maple program:
    with(numtheory):
    a:= proc(n) a(n):= `if`(n<2, n, add(a(n-k)*add(a(d)*d*
           (-1)^(k/d+1), d=divisors(k)), k=1..n-1)/(n-1))
        end:
    seq(a(n), n=0..50);  # Alois P. Heinz, Jul 15 2014
  • Mathematica
    s[ n_, k_ ] := s[ n, k ]=a[ n+1-k ]+If[ n<2k, 0, -s[ n-k, k ] ]; a[ 1 ]=1; a[ n_ ] := a[ n ]=Sum[ a[ i ]s[ n-1, i ]i, {i, 1, n-1} ]/(n-1); Table[ a[ i ], {i, 1, 30} ] (* Robert A. Russell *)
    a[ n_] := If[ n < 2, Boole[n == 1], Nest[ CoefficientList[ Normal[ Times @@ (Table[1 + x^k, {k, Length@#}]^#) + x O[x]^Length@#], x] &, {}, n - 1][[n]]]; (* Michael Somos, Jul 10 2014 *)
    a[n_] := a[n] = Sum[a[n-k]*Sum[a[d]*d*(-1)^(k/d+1),{d, Divisors[k]}], {k, 1, n-1}]/(n-1); a[0]=0; a[1]=1; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 02 2015 *)
  • PARI
    N=66;  A=vector(N+1, j, 1);
    for (n=1, N, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, (-1)^(k/d+1) * d * A[d]) * A[n-k+1] ) );
    concat([0], A)
    \\ Joerg Arndt, Jul 10 2014

Formula

Recurrence: a(n+1) = (1/n) * Sum_{k=1..n} ( Sum_{d|k} (-1)^(k/d+1) d*a(d) ) * a(n-k+1). - Mitchell Harris, Dec 02 2004
G.f. satisfies A(x) = x*exp(A(x) - A(x^2)/2 + A(x^3)/3 - A(x^4)/4 + ...). [Harary and Prins]
Also A(x) = Sum_{n >= 1} a(n)*x^n = x * Product_{n >= 1} (1+x^n)^a(n).
a(n) ~ c * d^n / n^(3/2), where d = A246169 = 2.51754035263200389079535..., c = 0.3625364233974198712298411097408713812865256408189512533230825639621448038... . - Vaclav Kotesovec, Aug 22 2014, updated Dec 26 2020

A277741 Array read by antidiagonals: A(n,k) is the number of unsensed planar maps with n vertices and k faces, n >= 1, k >= 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 5, 5, 2, 3, 13, 20, 13, 3, 6, 35, 83, 83, 35, 6, 12, 104, 340, 504, 340, 104, 12, 27, 315, 1401, 2843, 2843, 1401, 315, 27, 65, 1021, 5809, 15578, 21420, 15578, 5809, 1021, 65, 175, 3407, 24299, 82546, 149007, 149007, 82546, 24299, 3407, 175
Offset: 1

Views

Author

N. J. A. Sloane, Nov 07 2016

Keywords

Comments

A(n,k) is also the number of multiquadrangulations of the sphere with n stable equilibria and k unstable equilibria.
From Andrew Howroyd, Jan 13 2025: (Start)
The planar maps considered are connected and may contain loops and parallel edges.
The number of edges is n + k - 2. (End)

Examples

			The array begins:
   1,    1,    1,     2,     3,     6,   12,   27, 65, ...
   1,    2,    5,    13,    35,   104,  315, 1021, ...
   1,    5,   20,    83,   340,  1401, 5809, ...
   2,   13,   83,   504,  2843, 15578, ...
   3,   35,  340,  2843, 21420, ...
   6,  104, 1401, 15578, ...
  12,  315, 5809, ...
  27, 1021, ...
  65, ...
  ...
As a triangle, rows give the number of edges (first row is 0 edges):
   1;
   1,    1;
   1,    2,    1;
   2,    5,    5,     2;
   3,   13,   20,    13,     3;
   6,   35,   83,    83,    35,    6;
  12,  104,  340,   504,   340,   104,   12;
  27,  315, 1401,  2843,  2843,  1401,  315,   27;
  65, 1021, 5809, 15578, 21420, 15578, 5809, 1021, 65;
  ...
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, chapter 5.

Crossrefs

Antidiagonal sums are A006385.
Rows 1..2 (equally, columns 1..2) are A006082, A380239.
Cf. A269920 (rooted), A379430 (sensed), A379431 (achiral), A379432 (2-connected), A384963 (simple).

Formula

A(n,k) = A(k,n).
A(n,k) = (A379430(n,k) + A379431(n,k))/2. - Andrew Howroyd, Jan 14 2025

Extensions

Missing terms inserted and definition edited by Andrew Howroyd, Jan 13 2025

A303929 Array read by antidiagonals: T(n,k) is the number of noncrossing partitions up to rotation and reflection composed of n blocks of size k.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 3, 5, 6, 1, 1, 1, 1, 3, 8, 13, 12, 1, 1, 1, 1, 4, 11, 34, 49, 27, 1, 1, 1, 1, 4, 16, 60, 169, 201, 65, 1, 1, 1, 1, 5, 20, 109, 423, 1019, 940, 175, 1, 1, 1, 1, 5, 26, 167, 918, 3381, 6710, 4643, 490, 1
Offset: 0

Views

Author

Andrew Howroyd, May 02 2018

Keywords

Examples

			=================================================================
n\k| 1   2    3     4      5       6       7       8        9
---+-------------------------------------------------------------
0  | 1   1    1     1      1       1       1       1        1 ...
1  | 1   1    1     1      1       1       1       1        1 ...
2  | 1   1    1     1      1       1       1       1        1 ...
3  | 1   2    2     3      3       4       4       5        5 ...
4  | 1   3    5     8     11      16      20      26       32 ...
5  | 1   6   13    34     60     109     167     257      359 ...
6  | 1  12   49   169    423     918    1741    3051     4969 ...
7  | 1  27  201  1019   3381    9088   20569   41769    77427 ...
8  | 1  65  940  6710  29335   96315  259431  607696  1280045 ...
9  | 1 175 4643 47104 266703 1072187 3417520 9240444 22066742 ...
...
		

Crossrefs

Columns 2..5 are A006082(n+1), A082938, A303870, A303871.

Programs

  • Mathematica
    u[n_, k_, r_] := (r*Binomial[k*n + r, n]/(k*n + r));
    e[n_, k_] := Sum[ u[j, k, 1 + (n - 2*j)*k/2], {j, 0, n/2}]
    c[n_, k_] := If[n == 0, 1, (DivisorSum[n, EulerPhi[n/#]*Binomial[k*#, #]&] + DivisorSum[GCD[n - 1, k], EulerPhi[#]*Binomial[n*k/#, (n - 1)/#]&])/(k*n) - Binomial[k*n, n]/(n*(k - 1) + 1)];
    T[n_, k_] := (1/2)*(c[n, k] + If[n == 0, 1, If[OddQ[k], If[OddQ[n], 2*u[ Quotient[n, 2], k, (k + 1)/2], u[n/2, k, 1] + u[n/2 - 1, k, k]], e[n, k] + If[OddQ[n], u[Quotient[n, 2], k, k/2]]]/2]) /. Null -> 0;
    Table[T[n - k, k], {n, 1, 12}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Jun 14 2018, translated from PARI *)
  • PARI
    \\ here c(n,k) is A303694
    u(n,k,r) = {r*binomial(k*n + r, n)/(k*n + r)}
    e(n,k) = {sum(j=0, n\2, u(j, k, 1+(n-2*j)*k/2))}
    c(n, k)={if(n==0, 1, (sumdiv(n, d, eulerphi(n/d)*binomial(k*d, d)) + sumdiv(gcd(n-1, k), d, eulerphi(d)*binomial(n*k/d, (n-1)/d)))/(k*n) - binomial(k*n, n)/(n*(k-1)+1))}
    T(n,k)={(1/2)*(c(n,k) + if(n==0, 1, if(k%2, if(n%2, 2*u(n\2,k,(k+1)/2), u(n/2,k,1) + u(n/2-1,k,k)), e(n,k) + if(n%2, u(n\2,k,k/2)))/2))}

A384963 Triangle read by rows: T(n,k) is the number of embeddings on the sphere of connected simple planar graphs with n nodes and k faces, n >= 1, k=1..max(1,2*n-4).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 1, 3, 7, 7, 5, 2, 1, 6, 22, 42, 49, 35, 18, 5, 2, 12, 76, 237, 442, 510, 412, 218, 84, 18, 5, 27, 271, 1293, 3539, 6205, 7482, 6318, 3833, 1623, 485, 88, 14, 65, 1001, 6757, 25842, 63254, 106985, 129782, 115988, 76582, 37421, 13111, 3228, 489, 50
Offset: 1

Views

Author

Andrew Howroyd, Jun 13 2025

Keywords

Comments

Equivalently, T(n,k) is the number of unsensed simple planar maps with n vertices and k faces.
The number of edges is n+k-2.
Terms of this sequence can be computed using the tool "plantri". The expanded reference gives rows 1..14 of this table.

Examples

			Triangle begins:
   1;
   1;
   1,   1;
   2,   2,    1,    1,
   3,   7,    7,    5,    2,    1;
   6,  22,   42,   49,   35,   18,    5,    2;
  12,  76,  237,  442,  510,  412,  218,   84,   18,   5;
  27, 271, 1293, 3539, 6205, 7482, 6318, 3833, 1623, 485, 88, 14;
  ...
		

Crossrefs

Row sums are A372892.
Antidiagonal sums are A006395.
Columns 1..2 are A006082, A384967.
Cf. A277741 (not necessarily simple), A342060 (2-connected), A212438 (3-connected), A384850 (version by number of edges then vertices), A384964 (sensed version).

A302828 Array read by antidiagonals: T(n,k) = number of noncrossing path sets on k*n nodes up to rotation and reflection with each path having exactly k nodes.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 2, 1, 1, 3, 21, 22, 3, 1, 1, 6, 111, 494, 201, 6, 1, 1, 10, 604, 9400, 18086, 2244, 12, 1, 1, 20, 3196, 157040, 1141055, 794696, 29096, 27, 1, 1, 36, 16528, 2342480, 55967596, 161927208, 38695548, 404064, 65, 1
Offset: 0

Views

Author

Andrew Howroyd, May 01 2018

Keywords

Examples

			Array begins:
=======================================================
n\k| 1  2     3        4           5              6
---+---------------------------------------------------
0  | 1  1     1        1           1              1 ...
1  | 1  1     1        2           3              6 ...
2  | 1  1     4       21         111            604 ...
3  | 1  2    22      494        9400         157040 ...
4  | 1  3   201    18086     1141055       55967596 ...
5  | 1  6  2244   794696   161927208    23276467936 ...
6  | 1 12 29096 38695548 25334545270 10673231900808 ...
...
		

Crossrefs

Columns 2..4 are A006082(n+1), A303330, A303867.
Row n=1 is A005418(k-2).

Programs

  • Mathematica
    nmax = 10; seq[n_, k_] := Module[{p, q, h, c}, p = 1 + InverseSeries[ x/(k*2^(k - 3)*(1 + x)^k) + O[x]^n, x]; h = p /. x -> x^2 + O[x]^n; q = x*D[p, x]/p; c = Integrate[((p - 1)/k + Sum[EulerPhi[d]*(q /. x -> x^d + O[x]^n), {d, 2, n}])/x, x] + If[OddQ[k], 0, 2^(k/2 - 2)*x*h^(k/2)]; If[k == 1, 2/(1 - x) + O[x]^n, 3/2 + c + If[OddQ[k], h + x^2*2^(k - 3)*h^k + x*2^((k - 1)/2)*h^((k + 1)/2), If[k == 2, x*h, 0] + h/(1 - 2^(k/2 - 1)*x*h^(k/2))]/2]/2];
    Clear[col]; col[k_] := col[k] = CoefficientList[seq[nmax, k], x];
    T[n_, k_] := col[k][[n + 1]];
    Table[T[n - k, k], {n, 0, nmax}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Jul 04 2018, after Andrew Howroyd *)
  • PARI
    seq(n,k)={ \\ gives gf of k'th column
    my(p=1 + serreverse( x/(k*2^(k-3)*(1 + x)^k) + O(x*x^n) ));
    my(h=subst(p,x,x^2+O(x*x^n)), q=x*deriv(p)/p);
    my(c=intformal( ((p-1)/k + sum(d=2,n,eulerphi(d)*subst(q,x,x^d+O(x*x^n))))/x) + if(k%2, 0, 2^(k/2-2)*x*h^(k/2)));
    if(k==1, 2/(1-x) + O(x*x^n), 3/2 + c + if(k%2, h + x^2*2^(k-3)*h^k + x*2^((k-1)/2)*h^((k+1)/2), if(k==2,x*h,0) + h/(1-2^(k/2-1)*x*h^(k/2)) )/2)/2;
    }
    Mat(vector(6, k, Col(seq(7, k))))

A006079 Number of asymmetric planted projective plane trees with n+1 nodes; bracelets (reversible necklaces) with n black beads and n-1 white beads.

Original entry on oeis.org

1, 1, 0, 1, 4, 16, 56, 197, 680, 2368, 8272, 29162, 103544, 370592, 1335504, 4844205, 17672400, 64810240, 238795040, 883585406, 3281967832, 12232957152, 45740929104, 171529130786, 644950721584, 2430970600576, 9183671335776, 34766765428852, 131873955816880
Offset: 1

Views

Author

Keywords

Comments

"DHK[ n ](2n-1)" (bracelet, identity, unlabeled, n parts, evaluated at 2n) transform of 1,1,1,1,...
For n > 2, half the number of asymmetric Dyck (n-1)-paths. E.g., the two asymmetric 3-paths are UDUUDD and UUDDUD, so a(4) = 2/2 = 1. - David Scambler, Aug 23 2012

Examples

			For the asymmetric planted projective plane trees sequence we have a(5) = 4, a(6) = 16, a(7) = 56, ...
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Equals half the difference of A000108 and A001405.

Programs

  • Magma
    [1,1] cat [(Catalan(n) - Binomial(n, Floor(n/2)))/2: n in [2..40]]; // Vincenzo Librandi, Feb 16 2015
  • Mathematica
    a[1] = a[2] = 1; a[n_] := (CatalanNumber[n-1] - Binomial[n-1, Floor[(n-1)/2]])/2; Table[ a[n], {n, 1, 26}] (* Jean-François Alcover, Mar 09 2012, after David Callan *)

Formula

Let c(x) = (1-sqrt(1-4*x))/(2*x) = g.f. for Catalan numbers (A000108), let d(x) = x/(1-x-x^2*c(x^2)) = g.f. for A001405. Then g.f. for the asymmetric planted projective plane trees sequence is (x*c(x)-d(x))/2 (the initial terms from this version are slightly different).
a(n+1) = (CatalanNumber(n) - binomial(n,floor(n/2)))/2 (for n>=3). - David Callan, Jul 14 2006

Extensions

Alternative description and more terms from Christian G. Bower

A006080 Number of rooted projective plane trees with n nodes.

Original entry on oeis.org

1, 1, 2, 4, 9, 21, 56, 155, 469, 1480, 4882, 16545, 57384, 202060, 720526, 2593494, 9408469, 34350507, 126109784, 465200333, 1723346074, 6408356210, 23911272090, 89495909409, 335916761128, 1264114452996, 4768464309416, 18027250459483, 68291947831046, 259200707489634
Offset: 1

Views

Author

Keywords

Comments

Number of rooted planar trees that can be turned over.
Also bracelets (or necklaces) with n-1 black beads and n-1 white beads such that the beads switch colors when bracelet is turned over.

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • P. K. Stockmeyer, The charm bracelet problem and its applications, pp. 339-349 of Graphs and Combinatorics (Washington, Jun 1973), Ed. by R. A. Bari and F. Harary. Lect. Notes Math., Vol. 406. Springer-Verlag, 1974.

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[ EulerPhi[(n-1)/k]*(Binomial[2*k, k]/(2*(n-1))), {k, Divisors[n-1]}]/2 + 2^(n-3); a[1] = 1; Table[a[n], {n, 1, 27}] (* From Jean-François Alcover, Apr 11 2012, from formula *)
  • PARI
    C(n, k)=binomial(n, k);
    A003239(n) = if(n<=0, n==0, sumdiv(n, d, eulerphi(n/d) * C(2*d, d)) / (2*n) );
    a(n) = if ( n<=1, 1, A003239(n)/2 + 2^(n-2) );
    /* Joerg Arndt, Jan 25 2013 */
    
  • Python
    from sympy import binomial as C, totient, divisors
    def a003239(n): return 1 if n<2 else sum([totient(n//d)*C(2*d, d) for d in divisors(n)])/(2*n)
    def a(n): return 1 if n<2 else a003239(n)/2 + 2**(n - 2) # Indranil Ghosh, Apr 24 2017

Formula

Stockmeyer gives g.f.
a(n) = A003239(n)/2 + 2^(n-2). (n>=2) (corrected, Joerg Arndt, Jan 25 2013)

Extensions

More terms, formula and additional comments from Christian G. Bower, Dec 13 2001

A185100 Dihedral unlabeled Motzkin numbers: number of ways of drawing any number of nonintersecting chords joining n unlabeled points equally spaced on a circle, up to rotations and reflections of the circle.

Original entry on oeis.org

1, 1, 2, 2, 4, 5, 11, 16, 36, 65, 150, 312, 756, 1743, 4353, 10732, 27489, 70379, 183866, 481952, 1277784, 3402661, 9126689, 24584870, 66567924, 180939737, 493801694, 1352203202, 3715137460, 10237545525, 28291018283, 78384998904, 217715672036, 606103034821, 1691020991782, 4727601528674, 13242641322252, 37162431389051, 104469244613429
Offset: 0

Views

Author

Max Alekseyev, Feb 07 2011

Keywords

Comments

Unlabeled version of A001006. Another version is given by A175954.
The number of ways of drawing exactly n chords joining 2n unlabeled points up to rotations and reflections is A006082(n+1). - Andrey Zabolotskiy, May 24 2018

Crossrefs

Cf. A001006 (labeled points), A175954 (up to rotations only), A175955, A005773, A006082.

Programs

  • Mathematica
    a1006[0] = 1; a1006[n_Integer] := a1006[n] = a1006[n - 1] + Sum[a1006[k]* a1006[n - 2 - k], {k, 0, n - 2}];
    a142150[n_] := n*(1 + (-1)^n)/4;
    a2426[n_] := Coefficient[(1 + x + x^2)^n, x, n];
    a175954[0] = 1; a175954[n_] := (1/n)*(a1006[n] + a142150[n]*a1006[n/2 - 1] + Sum[EulerPhi[n/d]*a2426[d], {d, Most @Divisors[n]}]);
    a5773[0] = 1; a5773[n_] := Sum[k/n*Sum[Binomial[n, j]*Binomial[j, 2*j - n - k], {j, 0, n}], {k, 1, n}];
    a[0] = 1;
    a[n_?OddQ] := With[{m = (n-1)/2}, (1/2)*(a175954[2*m + 1] + a5773[m + 1])];
    a[n_?EvenQ] := With[{m = n/2}, (1/4)*(2*a175954[2*m] + a5773[m] + a5773[m + 1] + a1006[m - 1])];
    Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Jul 02 2018, after Andrew Howroyd *)

Formula

a(2n+1) = (1/2) * (A175954(2n+1) + A005773(n+1)). - Andrew Howroyd, Apr 01 2017
a(2n) = (1/4) * (2 * A175954(2n) + A005773(n) + A005773(n+1) + A001006(n-1)) for n > 0. - Andrew Howroyd, Apr 01 2017

A380616 Triangle read by rows: T(n,k) is the number of unsensed combinatorial maps with n edges and k vertices, 1 <= k <= n + 1.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 5, 8, 5, 2, 17, 33, 30, 13, 3, 79, 198, 208, 118, 35, 6, 554, 1571, 1894, 1232, 472, 104, 12, 5283, 16431, 21440, 15545, 6879, 1914, 315, 27, 65346, 213831, 296952, 233027, 115134, 37311, 7881, 1021, 65, 966156, 3288821, 4799336, 4019360, 2163112, 787065, 196267, 32857, 3407, 175
Offset: 0

Views

Author

Andrew Howroyd, Jan 28 2025

Keywords

Comments

By duality, also the number of unsensed combinatorial maps with n edges and k faces.

Examples

			Triangle begins:
n\k |     1       2       3       4       5      6     7     8   9
----+--------------------------------------------------------------
  0 |     1;
  1 |     1,      1;
  2 |     2,      2,      1;
  3 |     5,      8,      5,      2;
  4 |    17,     33,     30,     13,      3;
  5 |    79,    198,    208,    118,     35,     6;
  6 |   554,   1571,   1894,   1232,    472,   104,   12;
  7 |  5283,  16431,  21440,  15545,   6879,  1914,  315,   27;
  8 | 65346, 213831, 296952, 233027, 115134, 37311, 7881, 1021, 65;
  ...
		

Crossrefs

Row sums are A214816.
Main diagonal is A006082(n+1).
Columns 1..3 are A054499, A380620, A380621.
Cf. A053979 (rooted), A277741 (planar), A380615 (sensed), A380617 (achiral).

Formula

T(n,k) = (A380615(n,k) + A380617(n,k))/2.

A384850 Triangle read by rows: T(n,k) is the number of unsensed simple planar maps with n edges and k vertices, 1 <= k <= n+1.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 0, 1, 2, 0, 0, 0, 2, 3, 0, 0, 0, 1, 7, 6, 0, 0, 0, 1, 7, 22, 12, 0, 0, 0, 0, 5, 42, 76, 27, 0, 0, 0, 0, 2, 49, 237, 271, 65, 0, 0, 0, 0, 1, 35, 442, 1293, 1001, 175, 0, 0, 0, 0, 0, 18, 510, 3539, 6757, 3765, 490
Offset: 0

Views

Author

Andrew Howroyd, Jun 13 2025

Keywords

Comments

The planar maps considered here are connected.
The initial terms of this sequence can be computed using the tool "plantri", in particular the command "./plantri -u -v -c1 -p [n]" will compute values for a column.

Examples

			Triangle begins:
  1;
  0, 1;
  0, 0, 1;
  0, 0, 1, 2;
  0, 0, 0, 2, 3;
  0, 0, 0, 1, 7,  6;
  0, 0, 0, 1, 7, 22,  12;
  0, 0, 0, 0, 5, 42,  76,   27;
  0, 0, 0, 0, 2, 49, 237,  271,   65;
  0, 0, 0, 0, 1, 35, 442, 1293, 1001, 175;
  ...
		

Crossrefs

Row sums are A006395.
Column sums are A372892.
Main diagonal is A006082.
Subdiagonal is A384967.
Cf. A054923 (graphs), A277741 (not necessarily simple), A342060 (2-connected), A212438 (3-connected), A384963 (version by number of vertices then faces).
Showing 1-10 of 10 results.