cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A006082 Number of labeled projective plane trees (or "flat" trees) with n nodes.

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 12, 27, 65, 175, 490, 1473, 4588, 14782, 48678, 163414, 555885, 1913334, 6646728, 23278989, 82100014, 291361744, 1039758962, 3729276257, 13437206032, 48620868106, 176611864312, 643834562075, 2354902813742, 8640039835974, 31791594259244
Offset: 1

Views

Author

Keywords

Comments

Also, the number of noncrossing partitions up to rotation and reflection composed of n-1 blocks of size 2. - Andrew Howroyd, May 03 2018

References

  • R. W. Robinson, personal communication.
  • R. W. Robinson, Efficiency of power series operations for graph counting, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1982.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=2 of A302828 and A303929.
Cf. A002995 (noncrossing partitions into pairs up to rotations only), A126120, A001405, A185100.

Programs

  • Mathematica
    u[n_, k_, r_] := (r*Binomial[k*n + r, n]/(k*n + r));
    e[n_, k_] := Sum[ u[j, k, 1 + (n - 2*j)*k/2], {j, 0, n/2}]
    c[n_, k_] := If[n == 0, 1, (DivisorSum[n, EulerPhi[n/#]*Binomial[k*#, #]&] + DivisorSum[GCD[n-1, k], EulerPhi[#]*Binomial[n*k/#, (n-1)/#]&])/(k*n) - Binomial[k*n, n]/(n*(k - 1) + 1)];
    T[n_, k_] := (1/2)*(c[n, k] + If[n == 0, 1, If[OddQ[k], If[OddQ[n], 2*u[ Quotient[n, 2], k, (k + 1)/2], u[n/2, k, 1] + u[n/2 - 1, k, k]], e[n, k] + If[OddQ[n], u[Quotient[n, 2], k, k/2]]]/2]) /. Null -> 0;
    a[n_] := T[n, 2];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jun 14 2018, after Andrew Howroyd and A303929 *)
  • PARI
    \\ from David Broadhurst, Apr 06 2022, added by N. J. A. Sloane, Apr 06 2022
    {A006082(n)=my(c(n)=binomial(2*n,n));
    if(n<2,1,n--;(c(n)+if(n%2,2*n*(n+2),(n+1)^2)*c(n\2)
    +(n+1)*sumdiv(n,d,if(d>2,eulerphi(d)*c(n/d))))/(4*n*(n+1)));}

Formula

a(n) = A006080(n) - A006081(n) + A126120(n-2). [Stockmeyer] [Corrected by Andrey Zabolotskiy, Apr 06 2021]
a(n) = (2 * A002995(n) + A126120(n-2) + A001405(n-1)) / 4 for n > 1. - Andrey Zabolotskiy, May 24 2018
There is a compact formula from David Broadhurst - see the Pari code - N. J. A. Sloane, Apr 06 2022.
a(n) ~ 2^(2*n-4) / (sqrt(Pi) * n^(5/2)). - Vaclav Kotesovec, Jun 01 2022

Extensions

a(25) and a(26) from Robert W. Robinson, Oct 17 2006
a(27) and beyond from Andrew Howroyd, May 03 2018

A303864 Array read by antidiagonals: T(n,k) = number of noncrossing path sets on k*n nodes up to rotation with each path having exactly k nodes.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 6, 2, 1, 1, 4, 36, 38, 3, 1, 1, 10, 210, 960, 384, 6, 1, 1, 16, 1176, 18680, 35956, 4425, 14, 1, 1, 36, 6328, 313664, 2280910, 1588192, 57976, 34, 1, 1, 64, 32896, 4683168, 111925464, 323840016, 77381016, 807318, 95, 1
Offset: 0

Views

Author

Andrew Howroyd, May 01 2018

Keywords

Examples

			Array begins:
=======================================================
n\k| 1  2     3        4           5              6
---+---------------------------------------------------
0  | 1  1     1        1           1              1 ...
1  | 1  1     1        3           4             10 ...
2  | 1  1     6       36         210           1176 ...
3  | 1  2    38      960       18680         313664 ...
4  | 1  3   384    35956     2280910      111925464 ...
5  | 1  6  4425  1588192   323840016    46552781760 ...
6  | 1 14 57976 77381016 50668922540 21346459738384 ...
...
		

Crossrefs

Columns 2..4 are A002995(n+1), A303865, A303866.
Row n=1 is A051437(k-3).
Cf. A295224 (polygon dissections), A303694 (sets of cycles instead of paths).

Programs

  • Mathematica
    nmax = 10; seq[n_, k_] := Module[{p, q, h}, p = 1 + InverseSeries[ x/(k*2^If[k == 1, 0, k - 3]*(1 + x)^k) + O[x]^n, x ]; h = p /. x -> x^2 + O[x]^n; q = x*D[p, x]/p; Integrate[((p - 1)/k + Sum[EulerPhi[d]*(q /. x -> x^d + O[x]^n), {d, 2, n}])/x, x] + If[OddQ[k], 0, 2^(k/2 - 2)*x*h^(k/2)] + 1];
    Clear[col]; col[k_] := col[k] = CoefficientList[seq[nmax, k], x];
    T[n_, k_] := col[k][[n + 1]];
    Table[T[n - k, k], {n, 0, nmax}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Jul 04 2018, after Andrew Howroyd *)
  • PARI
    seq(n,k)={ \\ gives gf of k'th column
    my(p=1 + serreverse( x/(k*2^if(k==1, 0, k-3)*(1 + x)^k) + O(x*x^n) ));
    my(h=subst(p,x,x^2+O(x*x^n)), q=x*deriv(p)/p);
    intformal( ((p-1)/k + sum(d=2,n,eulerphi(d)*subst(q,x,x^d+O(x*x^n))))/x) + if(k%2, 0, 2^(k/2-2)*x*h^(k/2)) + 1;
    }
    Mat(vector(6, k, Col(seq(7, k))))

A303330 a(n) is the number of noncrossing path sets on 3*n nodes up to rotation and reflection with each path having exactly 3 nodes.

Original entry on oeis.org

1, 1, 4, 22, 201, 2244, 29096, 404064, 5915838, 89918914, 1408072452, 22585364697, 369552118682, 6148989874890, 103788529623864, 1773645405777098, 30638842342771863, 534324445644633987, 9397210553851138484, 166518651072771792918, 2970743502941350443069
Offset: 0

Views

Author

J. Stauduhar, Apr 21 2018

Keywords

Comments

Paths are constructed using noncrossing line segments between the vertices of a regular 3n-gon. Isolated vertices are not allowed.

Crossrefs

Column k=3 of A302828.

Programs

  • Mathematica
    seq[n_] := Module[{p, h, q, c}, p = 1 + InverseSeries[x/(3*(1 + x)^3) + O[x]^n , x]; h = (p /. x -> x^2 + O[x]^n); q = x*D[p, x]/p; c = Integrate[((p - 1)/3 + Sum[EulerPhi[d]*(q /. x -> x^d + O[x]^n), {d, 2, n}])/x, x]; CoefficientList[1 + c + (1 + h + x^2*h^3 + x*2*h^2)/2, x]/2];
    seq[30] (* Jean-François Alcover, Jul 05 2018, after Andrew Howroyd *)
  • PARI
    seq(n)={
    my(p=1 + serreverse( x/(3*(1 + x)^3) + O(x*x^n) ));
    my(h=subst(p, x, x^2 + O(x*x^n)), q=x*deriv(p)/p);
    my(c=intformal(((p-1)/3 + sum(d=2, n, eulerphi(d)*subst(q, x, x^d+O(x*x^n))))/x));
    Vec(1 + c + (1 + h + x^2*h^3 + x*2*h^2)/2)/2} \\ Andrew Howroyd, Apr 29 2018

Formula

a(n) ~ 3^(4*n - 1/2) / (sqrt(Pi) * n^(5/2) * 2^(2*n + 3)). - Vaclav Kotesovec, Jun 01 2022

Extensions

Terms a(8) and beyond from Andrew Howroyd, Apr 29 2018
a(6) corrected by Andrew Howroyd, May 03 2018

A303867 Number of noncrossing path sets on 4*n nodes up to rotation and reflection with each path having exactly 4 nodes.

Original entry on oeis.org

1, 2, 21, 494, 18086, 794696, 38695548, 2015556488, 110292751866, 6267709291736, 367003473639464, 22018423100856184, 1347856204419978236, 83918845269760695536, 5300972002005297517812, 339058084617031980524000, 21924124400037221008705338, 1431303944222490626674244672
Offset: 0

Views

Author

Andrew Howroyd, May 01 2018

Keywords

Crossrefs

Column 4 of A302828.

Formula

a(n) ~ 2^(11*n - 5/2) / (sqrt(Pi) * n^(5/2) * 3^(3*n + 3/2)). - Vaclav Kotesovec, Jun 01 2022

A303868 Triangle read by rows: T(n,k) = number of noncrossing path sets on n nodes up to rotation and reflection with k paths and isolated vertices allowed.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 3, 2, 1, 3, 7, 6, 2, 1, 6, 20, 23, 11, 3, 1, 10, 50, 80, 51, 17, 3, 1, 20, 136, 285, 252, 109, 26, 4, 1, 36, 346, 966, 1119, 652, 200, 36, 4, 1, 72, 901, 3188, 4782, 3623, 1502, 352, 50, 5, 1, 136, 2264, 10133, 19116, 18489, 9949, 3120, 570, 65, 5, 1
Offset: 1

Views

Author

Andrew Howroyd, May 01 2018

Keywords

Examples

			Triangle begins:
   1;
   1,   1;
   1,   1,    1;
   2,   3,    2,    1;
   3,   7,    6,    2,    1;
   6,  20,   23,   11,    3,    1;
  10,  50,   80,   51,   17,    3,   1;
  20, 136,  285,  252,  109,   26,   4,  1;
  36, 346,  966, 1119,  652,  200,  36,  4, 1;
  72, 901, 3188, 4782, 3623, 1502, 352, 50, 5, 1;
  ...
		

Crossrefs

Row sums are A303835.
Column 1 is A005418(n-2).

Programs

  • PARI
    \\ See A303731 for NCPathSetsModDihedral
    { my(rows=Vec(NCPathSetsModDihedral(vector(10, k, y))-1));
      for(n=1, #rows, for(k=1, n, print1(polcoeff(rows[n],k), ", ")); print;) }
Showing 1-5 of 5 results.