cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A302828 Array read by antidiagonals: T(n,k) = number of noncrossing path sets on k*n nodes up to rotation and reflection with each path having exactly k nodes.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 2, 1, 1, 3, 21, 22, 3, 1, 1, 6, 111, 494, 201, 6, 1, 1, 10, 604, 9400, 18086, 2244, 12, 1, 1, 20, 3196, 157040, 1141055, 794696, 29096, 27, 1, 1, 36, 16528, 2342480, 55967596, 161927208, 38695548, 404064, 65, 1
Offset: 0

Views

Author

Andrew Howroyd, May 01 2018

Keywords

Examples

			Array begins:
=======================================================
n\k| 1  2     3        4           5              6
---+---------------------------------------------------
0  | 1  1     1        1           1              1 ...
1  | 1  1     1        2           3              6 ...
2  | 1  1     4       21         111            604 ...
3  | 1  2    22      494        9400         157040 ...
4  | 1  3   201    18086     1141055       55967596 ...
5  | 1  6  2244   794696   161927208    23276467936 ...
6  | 1 12 29096 38695548 25334545270 10673231900808 ...
...
		

Crossrefs

Columns 2..4 are A006082(n+1), A303330, A303867.
Row n=1 is A005418(k-2).

Programs

  • Mathematica
    nmax = 10; seq[n_, k_] := Module[{p, q, h, c}, p = 1 + InverseSeries[ x/(k*2^(k - 3)*(1 + x)^k) + O[x]^n, x]; h = p /. x -> x^2 + O[x]^n; q = x*D[p, x]/p; c = Integrate[((p - 1)/k + Sum[EulerPhi[d]*(q /. x -> x^d + O[x]^n), {d, 2, n}])/x, x] + If[OddQ[k], 0, 2^(k/2 - 2)*x*h^(k/2)]; If[k == 1, 2/(1 - x) + O[x]^n, 3/2 + c + If[OddQ[k], h + x^2*2^(k - 3)*h^k + x*2^((k - 1)/2)*h^((k + 1)/2), If[k == 2, x*h, 0] + h/(1 - 2^(k/2 - 1)*x*h^(k/2))]/2]/2];
    Clear[col]; col[k_] := col[k] = CoefficientList[seq[nmax, k], x];
    T[n_, k_] := col[k][[n + 1]];
    Table[T[n - k, k], {n, 0, nmax}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Jul 04 2018, after Andrew Howroyd *)
  • PARI
    seq(n,k)={ \\ gives gf of k'th column
    my(p=1 + serreverse( x/(k*2^(k-3)*(1 + x)^k) + O(x*x^n) ));
    my(h=subst(p,x,x^2+O(x*x^n)), q=x*deriv(p)/p);
    my(c=intformal( ((p-1)/k + sum(d=2,n,eulerphi(d)*subst(q,x,x^d+O(x*x^n))))/x) + if(k%2, 0, 2^(k/2-2)*x*h^(k/2)));
    if(k==1, 2/(1-x) + O(x*x^n), 3/2 + c + if(k%2, h + x^2*2^(k-3)*h^k + x*2^((k-1)/2)*h^((k+1)/2), if(k==2,x*h,0) + h/(1-2^(k/2-1)*x*h^(k/2)) )/2)/2;
    }
    Mat(vector(6, k, Col(seq(7, k))))

A303865 Number of noncrossing path sets on 3*n nodes up to rotation with each path having exactly 3 nodes.

Original entry on oeis.org

1, 1, 6, 38, 384, 4425, 57976, 807318, 11828706, 179826245, 2816100678, 45170552490, 739103543356, 12297976924176, 207577047945312, 3547290764931730, 61277684496311364, 1068648890500799799, 18794421104465407618, 333037302131948734566, 5941487005826379359448
Offset: 0

Views

Author

Andrew Howroyd, May 01 2018

Keywords

Crossrefs

Column 3 of A303864.

Programs

  • Mathematica
    seq[n_] := Module[{p, q}, p = 1 + InverseSeries[x/(3*(1 + x)^3) + O[x]^n]; q = x*D[p, x]/p; Integrate[((p - 1)/3 + Sum[EulerPhi[d]*(q /. x -> x^d + O[x]^n), {d, 2, n}])/x, x] + 1];
    CoefficientList[seq[21], x] (* Jean-François Alcover, Jul 05 2018, after Andrew Howroyd *)
  • PARI
    seq(n)={ my(p=1 + serreverse( x/(3*(1 + x)^3) + O(x*x^n) )); my(q=x*deriv(p)/p);
    Vec(intformal(((p-1)/3 + sum(d=2, n, eulerphi(d)*subst(q, x, x^d+O(x*x^n))))/x) + 1)}

Formula

a(n) ~ 3^(4*n - 1/2) / (sqrt(Pi) * n^(5/2) * 2^(2*n + 2)). - Vaclav Kotesovec, Jun 01 2022

A303867 Number of noncrossing path sets on 4*n nodes up to rotation and reflection with each path having exactly 4 nodes.

Original entry on oeis.org

1, 2, 21, 494, 18086, 794696, 38695548, 2015556488, 110292751866, 6267709291736, 367003473639464, 22018423100856184, 1347856204419978236, 83918845269760695536, 5300972002005297517812, 339058084617031980524000, 21924124400037221008705338, 1431303944222490626674244672
Offset: 0

Views

Author

Andrew Howroyd, May 01 2018

Keywords

Crossrefs

Column 4 of A302828.

Formula

a(n) ~ 2^(11*n - 5/2) / (sqrt(Pi) * n^(5/2) * 3^(3*n + 3/2)). - Vaclav Kotesovec, Jun 01 2022
Showing 1-3 of 3 results.