cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A302828 Array read by antidiagonals: T(n,k) = number of noncrossing path sets on k*n nodes up to rotation and reflection with each path having exactly k nodes.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 2, 1, 1, 3, 21, 22, 3, 1, 1, 6, 111, 494, 201, 6, 1, 1, 10, 604, 9400, 18086, 2244, 12, 1, 1, 20, 3196, 157040, 1141055, 794696, 29096, 27, 1, 1, 36, 16528, 2342480, 55967596, 161927208, 38695548, 404064, 65, 1
Offset: 0

Views

Author

Andrew Howroyd, May 01 2018

Keywords

Examples

			Array begins:
=======================================================
n\k| 1  2     3        4           5              6
---+---------------------------------------------------
0  | 1  1     1        1           1              1 ...
1  | 1  1     1        2           3              6 ...
2  | 1  1     4       21         111            604 ...
3  | 1  2    22      494        9400         157040 ...
4  | 1  3   201    18086     1141055       55967596 ...
5  | 1  6  2244   794696   161927208    23276467936 ...
6  | 1 12 29096 38695548 25334545270 10673231900808 ...
...
		

Crossrefs

Columns 2..4 are A006082(n+1), A303330, A303867.
Row n=1 is A005418(k-2).

Programs

  • Mathematica
    nmax = 10; seq[n_, k_] := Module[{p, q, h, c}, p = 1 + InverseSeries[ x/(k*2^(k - 3)*(1 + x)^k) + O[x]^n, x]; h = p /. x -> x^2 + O[x]^n; q = x*D[p, x]/p; c = Integrate[((p - 1)/k + Sum[EulerPhi[d]*(q /. x -> x^d + O[x]^n), {d, 2, n}])/x, x] + If[OddQ[k], 0, 2^(k/2 - 2)*x*h^(k/2)]; If[k == 1, 2/(1 - x) + O[x]^n, 3/2 + c + If[OddQ[k], h + x^2*2^(k - 3)*h^k + x*2^((k - 1)/2)*h^((k + 1)/2), If[k == 2, x*h, 0] + h/(1 - 2^(k/2 - 1)*x*h^(k/2))]/2]/2];
    Clear[col]; col[k_] := col[k] = CoefficientList[seq[nmax, k], x];
    T[n_, k_] := col[k][[n + 1]];
    Table[T[n - k, k], {n, 0, nmax}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Jul 04 2018, after Andrew Howroyd *)
  • PARI
    seq(n,k)={ \\ gives gf of k'th column
    my(p=1 + serreverse( x/(k*2^(k-3)*(1 + x)^k) + O(x*x^n) ));
    my(h=subst(p,x,x^2+O(x*x^n)), q=x*deriv(p)/p);
    my(c=intformal( ((p-1)/k + sum(d=2,n,eulerphi(d)*subst(q,x,x^d+O(x*x^n))))/x) + if(k%2, 0, 2^(k/2-2)*x*h^(k/2)));
    if(k==1, 2/(1-x) + O(x*x^n), 3/2 + c + if(k%2, h + x^2*2^(k-3)*h^k + x*2^((k-1)/2)*h^((k+1)/2), if(k==2,x*h,0) + h/(1-2^(k/2-1)*x*h^(k/2)) )/2)/2;
    }
    Mat(vector(6, k, Col(seq(7, k))))

A303869 Triangle read by rows: T(n,k) = number of noncrossing path sets on n nodes up to rotation with k paths and isolated vertices allowed.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 3, 4, 2, 1, 4, 11, 8, 2, 1, 10, 34, 39, 16, 3, 1, 16, 92, 144, 90, 25, 3, 1, 36, 256, 545, 473, 197, 40, 4, 1, 64, 672, 1878, 2184, 1246, 370, 56, 4, 1, 136, 1762, 6296, 9436, 7130, 2910, 658, 80, 5, 1, 256, 4480, 20100, 38025, 36690, 19698, 6090, 1080, 105, 5, 1
Offset: 1

Views

Author

Andrew Howroyd, May 01 2018

Keywords

Examples

			Triangle begins:
    1;
    1,    1;
    1,    1,    1;
    3,    4,    2,    1;
    4,   11,    8,    2,    1;
   10,   34,   39,   16,    3,    1;
   16,   92,  144,   90,   25,    3,   1;
   36,  256,  545,  473,  197,   40,   4,  1;
   64,  672, 1878, 2184, 1246,  370,  56,  4, 1;
  136, 1762, 6296, 9436, 7130, 2910, 658, 80, 5, 1;
  ...
		

Crossrefs

Row sums are A303836.
Column 1 is A051437(n-3).

Programs

  • PARI
    \\ See A303732 for NCPathSetsModCyclic
    { my(rows=Vec(NCPathSetsModCyclic(vector(10, k, y))-1));
    for(n=1, #rows, for(k=1,n,print1(polcoeff(rows[n],k), ", ")); print;)}
Showing 1-2 of 2 results.