A006114 Gaussian binomial coefficient [ 2n,n ] for q=5.
1, 6, 806, 2558556, 200525284806, 391901483074853556, 19138263752352528498478556, 23362736428829868448189697999416056, 712977784594148279816735342927316866304884806, 543959438081999965602054955428186322207689611643379103556
Offset: 0
Keywords
References
- J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
Links
- Robert Israel, Table of n, a(n) for n = 0..36
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351. (Annotated scanned copy)
- Index entries related to Gaussian binomial coefficients
Programs
-
Maple
with(QDifferenceEquations): seq(eval(QSimpComb(QBinomial(2*n,n,q)),q=5), n=0..12); # Robert Israel, Feb 01 2018
-
Mathematica
Table[QBinomial[2n,n,5],{n,0,10}] (* Harvey P. Dale, Jun 10 2018 *)