cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006124 a(n) = 3 + n/2 + 7*n^2/2.

Original entry on oeis.org

3, 7, 18, 36, 61, 93, 132, 178, 231, 291, 358, 432, 513, 601, 696, 798, 907, 1023, 1146, 1276, 1413, 1557, 1708, 1866, 2031, 2203, 2382, 2568, 2761, 2961, 3168, 3382, 3603, 3831, 4066, 4308, 4557, 4813, 5076, 5346, 5623, 5907, 6198, 6496, 6801, 7113, 7432, 7758
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A022265.

Programs

  • Magma
    I:=[3, 7, 18]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..50]]; // Vincenzo Librandi, Jul 07 2012
    
  • Mathematica
    Table[3+n/2+7/2 n^2,{n,0,50}]  (* Harvey P. Dale, Mar 21 2011 *)
    CoefficientList[Series[(3-2*x+6*x^2)/(1-x)^3,{x,0,50}],x] (* Vincenzo Librandi, Jul 07 2012 *)
  • PARI
    a(n)=3+n/2+7*n^2/2 \\ Charles R Greathouse IV, Jun 17 2017

Formula

From Vincenzo Librandi, Jul 07 2012: (Start)
G.f.: (3 - 2*x + 6*x^2)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
a(n) = 3 + A022265(n). - R. J. Mathar, Jan 12 2024
E.g.f.: exp(x)*(6 + 8*x + 7*x^2)/2. - Elmo R. Oliveira, Dec 28 2024