cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006189 Number of self-avoiding walks of any length from NW to SW corners of a grid or lattice with n rows and 3 columns.

Original entry on oeis.org

1, 1, 3, 11, 38, 126, 415, 1369, 4521, 14933, 49322, 162900, 538021, 1776961, 5868903, 19383671, 64019918, 211443426, 698350195, 2306494009, 7617832221, 25159990673, 83097804242, 274453403400, 906458014441, 2993827446721, 9887940354603, 32657648510531
Offset: 0

Views

Author

Keywords

Comments

a(n) = number of non-self-intersecting (or self-avoiding) paths from upper-left to lower-left of a grid of squares with 3 columns and n rows. E.g., for 3 columns and 2 rows, the paths are D, RDL, and RRDLL and the second a(n) = 3. The next a(n) = 11, which is the number of paths in a 3 X 3 grid: DD, DRDL, DRRDLL, DRURDDLL, RDDL, RDRDLL, RDLD, RRDDLL, RRDDLULD, RRDLDL, RRDLLD (where R=right, L=left, D=down, U=up). - Toby Gottfried, Mar 04 2013

References

  • H. L. Abbott and D. Hanson, A lattice path problem, Ars Combin., 6 (1978), 163-178.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 3 of A271465.
Cf. A005409 (grids with 3 rows), A001333.
Cf. A214931 (grids with 4 rows).
Cf. A216211 (grids with 4 columns).

Programs

  • Magma
    I:=[1,3,11,38]; [1] cat [n le 4 select I[n] else 4*Self(n-1) -3*Self(n-2) +2*Self(n-3) +Self(n-4): n in [1..41]]; // G. C. Greubel, May 24 2021
    
  • Mathematica
    LinearRecurrence[{4,-3,2,1}, {1,1,3,11,38}, 100] (* Jean-François Alcover, Oct 08 2017 *)
    With[{U = ChebyshevU}, Table[(1/2)*(U[n, 1/2] -U[n-1, 1/2] + I^n*(U[n, -3*I/2] + I*U[n-1, -3*I/2]) ), {n, 0, 40}]] (* G. C. Greubel, May 24 2021 *)
  • PARI
    Vec((1-x)*(1-2*x)/((1-x+x^2)*(1-3*x-x^2)) + O(x^40)) \\ Colin Barker, Nov 17 2017
    
  • Sage
    u=chebyshev_U;
    [(1/2)*( u(n, 1/2) - u(n-1, 1/2) + i^n*(u(n, -3*i/2) + i*u(n-1, -3*i/2)) ) for n in (0..30)] # G. C. Greubel, May 24 2021

Formula

a(n) = 4*a(n-1) - 3*a(n-2) + 2*a(n-3) + a(n-4) for n > 3. - Giovanni Resta, Mar 13 2013
G.f.: (1-x)*(1-2*x)/((1 - x + x^2)*(1 - 3*x - x^2)). - Colin Barker, Nov 17 2017
2*a(n) = A010892(n) + A052924(n). - R. J. Mathar, Sep 27 2020
a(n) = (1/2)*( ChebyshevU(n, 1/2) - ChebyshevU(n-1, 1/2) + i^n*( ChebyshevU(n, -3*i/2) + i*ChebyshevU(n-1, -3*i/2) ) ). - G. C. Greubel, May 24 2021

Extensions

Based on upper-left to lower-left path-counting program, more terms from Toby Gottfried, Mar 04 2013
Name clarified, offset changed, a(16)-a(25) from Andrew Howroyd, Apr 07 2016
a(0)=1 prepended by Colin Barker, Nov 17 2017