A006191 Number of paths on square lattice.
1, 2, 5, 16, 54, 180, 595, 1964, 6485, 21418, 70740, 233640, 771661, 2548622, 8417525, 27801196, 91821114, 303264540, 1001614735, 3308108744, 10925940965, 36085931638, 119183735880, 393637139280, 1300095153721, 4293922600442
Offset: 1
References
- H. L. Abbott and D. Hanson, A lattice path problem, Ars Combin., 6 (1978), 163-178.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..1928
- H. L. Abbott and D. Hanson, A lattice path problem, Ars Combin., 6 (1978), 163-178. (Annotated scanned copy)
- Index entries for linear recurrences with constant coefficients, signature (4,-3,2,1).
Programs
-
Mathematica
LinearRecurrence[{4,-3,2,1},{1,2,5,16},30] (* Harvey P. Dale, Mar 22 2018 *)
Formula
a(n) = 1 + Sum_{k=1..n-1} A006189(k). - Sean A. Irvine, Jan 20 2017
From Colin Barker, Jan 20 2017: (Start)
a(n) = 4*a(n-1) - 3*a(n-2) + 2*a(n-3) + a(n-4) for n>4.
G.f.: x*(1 - 2*x) / ((1 - x + x^2)*(1 - 3*x - x^2)).
(End)
Extensions
Offset corrected and more terms from Sean A. Irvine, Jan 20 2017