cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006191 Number of paths on square lattice.

Original entry on oeis.org

1, 2, 5, 16, 54, 180, 595, 1964, 6485, 21418, 70740, 233640, 771661, 2548622, 8417525, 27801196, 91821114, 303264540, 1001614735, 3308108744, 10925940965, 36085931638, 119183735880, 393637139280, 1300095153721, 4293922600442
Offset: 1

Views

Author

Keywords

References

  • H. L. Abbott and D. Hanson, A lattice path problem, Ars Combin., 6 (1978), 163-178.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Mathematica
    LinearRecurrence[{4,-3,2,1},{1,2,5,16},30] (* Harvey P. Dale, Mar 22 2018 *)

Formula

a(n) = 1 + Sum_{k=1..n-1} A006189(k). - Sean A. Irvine, Jan 20 2017
From Colin Barker, Jan 20 2017: (Start)
a(n) = 4*a(n-1) - 3*a(n-2) + 2*a(n-3) + a(n-4) for n>4.
G.f.: x*(1 - 2*x) / ((1 - x + x^2)*(1 - 3*x - x^2)).
(End)

Extensions

Offset corrected and more terms from Sean A. Irvine, Jan 20 2017