cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006200 Number of partitions into pairs.

Original entry on oeis.org

1, 6, 55, 610, 7980, 120274, 2052309, 39110490, 823324755, 18974858540, 475182478056, 12848667150956, 373081590628565, 11578264139795430, 382452947343624515, 13397354334102974934, 496082324933446766724, 19360538560004548357830, 794275868644522931369185
Offset: 1

Views

Author

Keywords

References

  • G. Kreweras and Y. Poupard, Sur les partitions en paires d'un ensemble fini totalement ordonne, Publications de l'Institut de Statistique de l'Université de Paris, 23 (1978), 57-74.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A079267.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, n,
         (n*(4*n^2-7)*a(n-1)+(n+1)*(2*n+1)*a(n-2))/((2*n-1)*(n-1)))
        end:
    seq(a(n), n=1..20);  # Alois P. Heinz, Jan 24 2017
  • Mathematica
    Table[(2*n+1)! * Hypergeometric1F1[1-n, -1-2*n, -2] / (3*2^n*(n-1)!), {n, 1, 20}] (* Vaclav Kotesovec, Jan 24 2017 *)

Formula

a(n) = A079267(n + 2, 3). - Sean A. Irvine, Jan 24 2017
a(n) ~ 2^(n + 3/2) * n^(n + 2) / (3 * exp(n + 1)). - Vaclav Kotesovec, May 20 2018

Extensions

More terms from Sean A. Irvine, Jan 24 2017