cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006207 Generalized Fibonacci numbers A_{n,2}.

Original entry on oeis.org

1, 1, 0, 1, 1, 2, 2, 3, 4, 6, 8, 11, 16, 23, 32, 46, 66, 94, 136, 195, 282, 408, 592, 856, 1248, 1814, 2646, 3858, 5644, 8246, 12088, 17706, 25992, 38155, 56102, 82490, 121474, 178902, 263776, 389033, 574304, 848069, 1253344, 1852926, 2741164
Offset: 1

Views

Author

Keywords

Comments

Bau-Sen Du (1985)'s Table 1, p. 6, has this sequence as the third column. - Jonathan Vos Post, Jun 18 2007

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A006206 (A_{n,1}), A006208 (A_{n,3}), A006209 (A_{n,4}), A130628 (A_{n,5}), A208092 (A_{n,6}), A006210 (D_{n,2}), A006211 (D_{n,3}), A094392.

Programs

  • Mathematica
    max = 100; Clear[b1, b2]; For[n=1, n <= max, n++, For[j=1, j <= n, j++, b1[1][j, n] = 0; b1[2][j, n] = 1; b2[1][j, n] = b2[2][j, n] = 0]; b2[1][n, n] = b2[2][n, n] = 1]; For[k=3, k <= max, k++, For[n=1, n <= max, n++, For[j=1, j <= n-1, j++, b1[k][j, n] = b1[k-2][1, n] + b1[k - 2][j+1, n]; b2[k][j, n] = b2[k-2][1, n] + b2[k-2][j+1, n]; ]; b1[k][n, n] = b1[k-2][1, n] + b1[k-1][n, n]; b2[k][n, n] = b2[k-2][1, n] + b2[k - 1][n, n]]];
    phin[n_] := Table[b2[m][n, n] + 2*Sum[If[m + 2 - 2*j > 0, b1[m + 2 - 2*j][j, n], 0], {j, 1, n}], {m, 1, max}];
    MT[s_List] := Table[ DivisorSum[n, MoebiusMu[#]*s[[n/#]]&]/n, {n, 1, Length[s]}];
    MT[phin[2]] (* Jean-François Alcover, Dec 07 2015, adapted from Max Alekseyev's PARI script *)
  • PARI
    b1 = vector(100,k,matrix(100,100)); b2 = vector(100,k,matrix(100,100)); for(n=1,100, for(j=1,n, b1[1][j,n]=0; b1[2][j,n]=1; b2[1][j,n] = b2[2][j,n] = 0); b2[1][n,n] = b2[2][n,n] = 1); for(k=3,100, for(n=1,100, for(j=1,n-1, b1[k][j,n] = b1[k-2][1,n] + b1[k-2][j+1,n]; b2[k][j,n] = b2[k-2][1,n] + b2[k-2][j+1,n]; ); b1[k][n,n] = b1[k-2][1,n] + b1[k-1][n,n]; b2[k][n,n] = b2[k-2][1,n] + b2[k-1][n,n]; )); \\ Computing arrays b(k,1,j,n) and b(k,2,j,n)
    { phin(n) = vector(100,m, b2[m][n,n] + 2*sum(j=1,n, if(m+2-2*j>0, b1[m+2-2*j][j,n]))) } \\ sequence phi_n
    { MT(s) = vector(#s,n,sumdiv(n,d,moebius(d)*s[n/d])/n) } \\ Moebius transform
    MT( phin(2) ) \\ sequence A_{n,2}
    \\ Max Alekseyev, Feb 23 2012

Extensions

arxiv URL replaced with non-cached version by R. J. Mathar, Oct 30 2009
Terms a(32) onward from Max Alekseyev, Feb 23 2012