cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006232 Numerators of Cauchy numbers of first type.

Original entry on oeis.org

1, 1, -1, 1, -19, 9, -863, 1375, -33953, 57281, -3250433, 1891755, -13695779093, 24466579093, -132282840127, 240208245823, -111956703448001, 4573423873125, -30342376302478019, 56310194579604163
Offset: 0

Views

Author

Keywords

Comments

The corresponding denominators are given in A006233.
-a(n+1), n>=0, also numerators from e.g.f. 1/x-1/log(1+x), with denominators A075178(n). |a(n+1)|, n>=0, numerators from e.g.f. 1/x+1/log(1-x) with denominators A075178(n). For formula of unsigned a(n) see A075178.
The signed rationals a(n)/A006233(n) provide the a-sequence for the Stirling2 Sheffer matrix A048993. See the W. Lang link concerning Sheffer a- and z-sequences.
Cauchy numbers of the first type are also called Bernoulli numbers of the second kind.
Named after the French mathematician, engineer and physicist Augustin-Louis Cauchy (1789-1857). - Amiram Eldar, Jun 17 2021

Examples

			1, 1/2, -1/6, 1/4, -19/30, 9/4, -863/84, 1375/24, -33953/90, ...
		

References

  • Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 294.
  • Harold Jeffreys and B. S. Jeffreys, Methods of Mathematical Physics, Cambridge, 1946, p. 259.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [Numerator((&+[StirlingFirst(n,k)/(k+1): k in [0..n]])): n in [0..20]]; // G. C. Greubel, Nov 13 2018
    
  • Maple
    seq(numer(add(stirling1(n,k)/(k+1),k=0..n)),n=0..20); # Peter Luschny, Apr 28 2009
  • Mathematica
    a[n_] := Numerator[ Sum[ StirlingS1[n, k]/(k + 1), {k, 0, n}]]; Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Nov 03 2011, after Maple *)
    a[n_] := Numerator[ Integrate[ Gamma[x+1]/Gamma[x-n+1], {x, 0, 1}]]; Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Jul 29 2013 *)
    a[ n_] := If[ n < 0, 0, (-1)^n Numerator @ Integrate[ Pochhammer[ -x, n], {x, 0, 1}]]; (* Michael Somos, Jul 12 2014 *)
    a[ n_] := If[ n < 0, 0, Numerator [ n! SeriesCoefficient[ x / Log[ 1 + x], {x, 0, n}]]]; (* Michael Somos, Jul 12 2014 *)
    Join[{1}, Array[Numerator[(1/#) Integrate[Product[(x - k), {k, 0, # - 1}], {x, 0, 1}]] &, 25]] (* Michael De Vlieger, Nov 13 2018 *)
  • PARI
    for(n=0,20, print1(numerator( sum(k=0,n, stirling(n, k, 1)/(k+1)) ), ", ")) \\ G. C. Greubel, Nov 13 2018
    
  • Python
    # Results are abs values
    from fractions import gcd
    aa,n,sden = [0,1],1,1
    while n < 20:
        j,snom,sden,a = 1,0,(n+1)*sden,0
        while j < len(aa):
            snom,j = snom+aa[j]*(sden//(j+1)),j+1
        nom,den = snom,sden
        print(n,nom//gcd(nom,den))
        aa,j = aa+[-aa[j-1]],j-1
        while j > 0:
            aa[j],j = n*aa[j]-aa[j-1],j-1
        n = n+1 # A.H.M. Smeets, Nov 14 2018
    
  • Python
    from fractions import Fraction
    from sympy.functions.combinatorial.numbers import stirling
    def A006232(n): return sum(Fraction(stirling(n,k,kind=1,signed=True),k+1) for k in range(n+1)).numerator # Chai Wah Wu, Jul 09 2023
  • Sage
    def A006232_list(len):
        f, R, C = 1, [1], [1]+[0]*(len-1)
        for n in (1..len-1):
            for k in range(n, 0, -1):
                C[k] = -C[k-1] * k / (k + 1)
            C[0] = -sum(C[k] for k in (1..n))
            R.append((C[0]*f).numerator())
            f *= n
        return R
    print(A006232_list(20)) # Peter Luschny, Feb 19 2016
    

Formula

Numerator of integral of x(x-1)...(x-n+1) from 0 to 1.
E.g.f.: x/log(1+x). (Note: the numerator of the coefficient of x^n/n! is a(n) - Michael Somos, Jul 12 2014)
Numerator of Sum_{k=0..n} A048994(n,k)/(k+1). - Peter Luschny, Apr 28 2009
Sum_{k=1..n} 1/k = C + log(n) + 1/(2n) + Sum_{k=2..inf} |a(n)|/A075178(n-1) * 1/(n*(n+1)*...*(n+k-1)) (section 0.131 in Gradshteyn and Ryzhik tables). - Ralf Stephan, Jul 12 2014
a(n) = numerator(f(n) * n!), where f(0) = 1, f(n) = Sum_{k=0..n-1} (-1)^(n-k+1) * f(k) / (n-k+1). - Daniel Suteu, Feb 23 2018
Sum_{k = 1..n} (1/k) = A001620 + log(n) + 1/(2n) - Sum_{k >= 2} abs((a(k)/A006233(k)/k/(Product_{j = 0..k-1} (n-j)))), (see I. S. Gradsteyn, I. M. Ryzhik). - A.H.M. Smeets, Nov 14 2018