A006232 Numerators of Cauchy numbers of first type.
1, 1, -1, 1, -19, 9, -863, 1375, -33953, 57281, -3250433, 1891755, -13695779093, 24466579093, -132282840127, 240208245823, -111956703448001, 4573423873125, -30342376302478019, 56310194579604163
Offset: 0
Examples
1, 1/2, -1/6, 1/4, -19/30, 9/4, -863/84, 1375/24, -33953/90, ...
References
- Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 294.
- Harold Jeffreys and B. S. Jeffreys, Methods of Mathematical Physics, Cambridge, 1946, p. 259.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n=0..100
- Arnold Adelberg, 2-adic congruences of Norland numbers and of Bernoulli numbers of the second kind, J. Number Theory, Vol. 73, No. 1 (1998), pp. 47-58.
- I. S. Gradsteyn and I. M. Ryzhik, Table of integrals, series and products, (1980), page 2 (formula 0.131).
- L. B. W. Jolley, Summation of Series, Dover, (1961) (formula 70).
- Wolfdieter Lang, Sheffer a- and z-sequences.
- Wolfdieter Lang, On Generating functions of Diagonals Sequences of Sheffer and Riordan Number Triangles, arXiv:1708.01421 [math.NT], August 2017.
- Hong-Mei Liu, Shu-Hua Qi and Shu-Yan Ding, Some Recurrence Relations for Cauchy Numbers of the First Kind, JIS, Vol. 13 (2010), Article 10.3.8.
- Rui-Li Liu and Feng-Zhen Zhao, Log-concavity of two sequences related to Cauchy numbers of two kinds, Online Journal of Analytic Combinatorics, Issue 14 (2019), #09.
- Donatella Merlini, Renzo Sprugnoli and M. Cecilia Verri, The Cauchy numbers, Discrete Math., Vol. 306, No. 16 (2006), pp. 1906-1920.
- Eric Weisstein's World of Mathematics, Bernoulli Numbers of the Second Kind.
- Ming Wu and Hao Pan, Sums of products of Bernoulli numbers of the second kind, Fib. Quart., Vol. 45, No. 2 (2007), pp. 146-150.
- Feng-Zhen Zhao, Sums of products of Cauchy numbers, Discrete Math., Vol. 309, No. 12 (2009), pp. 3830-3842.
Programs
-
Magma
[Numerator((&+[StirlingFirst(n,k)/(k+1): k in [0..n]])): n in [0..20]]; // G. C. Greubel, Nov 13 2018
-
Maple
seq(numer(add(stirling1(n,k)/(k+1),k=0..n)),n=0..20); # Peter Luschny, Apr 28 2009
-
Mathematica
a[n_] := Numerator[ Sum[ StirlingS1[n, k]/(k + 1), {k, 0, n}]]; Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Nov 03 2011, after Maple *) a[n_] := Numerator[ Integrate[ Gamma[x+1]/Gamma[x-n+1], {x, 0, 1}]]; Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Jul 29 2013 *) a[ n_] := If[ n < 0, 0, (-1)^n Numerator @ Integrate[ Pochhammer[ -x, n], {x, 0, 1}]]; (* Michael Somos, Jul 12 2014 *) a[ n_] := If[ n < 0, 0, Numerator [ n! SeriesCoefficient[ x / Log[ 1 + x], {x, 0, n}]]]; (* Michael Somos, Jul 12 2014 *) Join[{1}, Array[Numerator[(1/#) Integrate[Product[(x - k), {k, 0, # - 1}], {x, 0, 1}]] &, 25]] (* Michael De Vlieger, Nov 13 2018 *)
-
PARI
for(n=0,20, print1(numerator( sum(k=0,n, stirling(n, k, 1)/(k+1)) ), ", ")) \\ G. C. Greubel, Nov 13 2018
-
Python
# Results are abs values from fractions import gcd aa,n,sden = [0,1],1,1 while n < 20: j,snom,sden,a = 1,0,(n+1)*sden,0 while j < len(aa): snom,j = snom+aa[j]*(sden//(j+1)),j+1 nom,den = snom,sden print(n,nom//gcd(nom,den)) aa,j = aa+[-aa[j-1]],j-1 while j > 0: aa[j],j = n*aa[j]-aa[j-1],j-1 n = n+1 # A.H.M. Smeets, Nov 14 2018
-
Python
from fractions import Fraction from sympy.functions.combinatorial.numbers import stirling def A006232(n): return sum(Fraction(stirling(n,k,kind=1,signed=True),k+1) for k in range(n+1)).numerator # Chai Wah Wu, Jul 09 2023
-
Sage
def A006232_list(len): f, R, C = 1, [1], [1]+[0]*(len-1) for n in (1..len-1): for k in range(n, 0, -1): C[k] = -C[k-1] * k / (k + 1) C[0] = -sum(C[k] for k in (1..n)) R.append((C[0]*f).numerator()) f *= n return R print(A006232_list(20)) # Peter Luschny, Feb 19 2016
Formula
Numerator of integral of x(x-1)...(x-n+1) from 0 to 1.
E.g.f.: x/log(1+x). (Note: the numerator of the coefficient of x^n/n! is a(n) - Michael Somos, Jul 12 2014)
Numerator of Sum_{k=0..n} A048994(n,k)/(k+1). - Peter Luschny, Apr 28 2009
Sum_{k=1..n} 1/k = C + log(n) + 1/(2n) + Sum_{k=2..inf} |a(n)|/A075178(n-1) * 1/(n*(n+1)*...*(n+k-1)) (section 0.131 in Gradshteyn and Ryzhik tables). - Ralf Stephan, Jul 12 2014
a(n) = numerator(f(n) * n!), where f(0) = 1, f(n) = Sum_{k=0..n-1} (-1)^(n-k+1) * f(k) / (n-k+1). - Daniel Suteu, Feb 23 2018
Sum_{k = 1..n} (1/k) = A001620 + log(n) + 1/(2n) - Sum_{k >= 2} abs((a(k)/A006233(k)/k/(Product_{j = 0..k-1} (n-j)))), (see I. S. Gradsteyn, I. M. Ryzhik). - A.H.M. Smeets, Nov 14 2018
Comments