cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006251 Number of n-element posets which are unions of 2 chains.

Original entry on oeis.org

1, 1, 2, 4, 10, 26, 75, 225, 711, 2311, 7725, 26313, 91141, 319749, 1134234, 4060128, 14648614, 53208998, 194423568, 714130372, 2635256408, 9764995800, 36320086418, 135548135854, 507434502474, 1904982684106, 7170113287574, 27051804890638, 102287657120454, 387558371409606, 1471212825012499, 5594771416613721
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 6.45.

Programs

  • Mathematica
    CoefficientList[Series[4/(2-2x+Sqrt[1-4x]+Sqrt[1-4x^2]), {x,0,40}], x] (* Harvey P. Dale, May 12 2011 *)
  • PARI
    x='x+O('x^44) /* that many terms */
    gf=4/(2-2*x+sqrt(1-4*x)+sqrt(1-4*x^2));
    Vec(gf) /* show terms */ /* Joerg Arndt, Apr 20 2011 */

Formula

G.f.: 4/(2-2*x+sqrt(1-4*x)+sqrt(1-4*x^2)).
a(n) ~ (2-sqrt(3))*2^(2*n+3)/(6*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Aug 13 2013
Recurrence: (n-1)*n*(n+2)*(n^2 - 8*n + 17)*a(n) = (n-1)*(9*n^4 - 74*n^3 + 159*n^2 + 36*n - 180)*a(n-1) - 2*(n-3)*(n-2)*(n-1)*(8*n^2 - 38*n + 15)*a(n-2) - 4*(n-1)*(14*n^4 - 194*n^3 + 999*n^2 - 2244*n + 1860)*a(n-3) + 8*(22*n^5 - 354*n^4 + 2259*n^3 - 7159*n^2 + 11307*n - 7125)*a(n-4) + 16*(n^5 - 37*n^4 + 392*n^3 - 1787*n^2 + 3681*n - 2775)*a(n-5) - 32*(2*n-9)*(6*n^4 - 100*n^3 + 612*n^2 - 1638*n + 1645)*a(n-6) + 64*(n-6)*(2*n-11)*(2*n-9)*(n^2 - 6*n + 10)*a(n-7). - Vaclav Kotesovec, Aug 13 2013

Extensions

More terms from James Sellers, Aug 21 2000