cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A119014 Numerators of "Farey fraction" approximations to e.

Original entry on oeis.org

1, 0, 1, 2, 3, 5, 8, 11, 19, 30, 49, 68, 87, 106, 193, 299, 492, 685, 878, 1071, 1264, 1457, 2721, 4178, 6899, 9620, 12341, 15062, 17783, 20504, 23225, 25946, 49171, 75117, 124288, 173459, 222630, 271801, 320972, 370143, 419314, 468485, 517656, 566827
Offset: 0

Views

Author

Joshua Zucker, May 08 2006

Keywords

Comments

"Add" (meaning here to add the numerators and add the denominators, not to add the fractions) 1/0 to 1/1 to make the fraction bigger: 2/1, 3/1. Now 3/1 is too big, so add 2/1 to make the fraction smaller: 5/2, 8/3, 11/4. Now 11/4 is too small, so add 8/3 to make the fraction bigger: 19/7, ...

Examples

			The fractions are 1/0, 0/1, 1/1, 2/1, 3/1, 5/2, 8/3, 11/4, 19/7, ...
		

Crossrefs

For another version see A006258.
Cf. A097545, A097546 gives the similar sequence for pi. A119015 gives the denominators for this sequence.

Programs

  • Mathematica
    f[x_, n_] := (m = Floor[x]; f0 = {m, m + 1/2, m + 1}; r = ({a___, b_, c_, d___} /; b < x < c) :> {b, (Numerator[b] + Numerator[c]) / (Denominator[b] + Denominator[c]), c};
     Join[{m, m + 1}, NestList[# /. r &, f0, n - 3][[All, 2]]]); Join[{1, 0, 1 }, f[E, 41]] // Numerator
    (* Jean-François Alcover, May 18 2011 *)

A006259 Denominators of approximations to e.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 7, 11, 18, 25, 32, 39, 71, 110, 181, 252, 323, 394, 465, 536, 1001, 1537, 2538, 3539, 4540, 5541, 6542, 7543, 8544, 9545, 18089, 27634, 45723, 63812, 81901, 99990, 118079, 136168, 154257, 172346, 190435, 208524, 398959, 607483
Offset: 1

Views

Author

Keywords

Examples

			A006258/A006259 = 1, 2, 3, 5/2, 8/3, 11/4, 19/7, 30/11, 49/18, 68/25, 87/32, 106/39, 193/71, 299/110, 492/181, ... .
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 122.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A006258 (numerators). For another version see A119015.
Cf. A001113.

Extensions

More terms from Joshua Zucker, May 08 2006
Two terms removed by Alois P. Heinz, Nov 14 2021

A227777 Least splitter of n-th and (n+1)st partial sums of 1/0! + 1/1! + ... + 1/n! + ... = e.

Original entry on oeis.org

1, 2, 3, 7, 39, 110, 252, 465, 1001, 9545, 27634, 136168, 589394, 398959, 5394991, 36568060, 130087267, 312129649, 5779594018, 5467464369, 69204258903, 186055048882, 403978495031, 8690849042711, 25668568633102, 246378923308185, 1163579759684330
Offset: 1

Views

Author

Clark Kimberling, Jul 30 2013

Keywords

Comments

Suppose x < y. The least splitter of x and y is introduced at A227631 as the least positive integer d such that x <= c/d < y for some integer c; the number c/d is called the least splitting rational of x and y. Let s(n) = 1/0! + 1/1! + ... + 1/n!; since s(n) -> e, the corresponding least splitting rationals (see Example) also approach e.
Conjecture: a(n) <= n*sqrt(n!) for all n>0; see scatterplot under Links. - Jon E. Schoenfield, Jun 28 2015

Examples

			The first 19 splitting rationals are 2, 5/2, 8/3, 19/7, 106/39, 299/110, 685/252, 1264/465, 2721/1001, 25946/9545, 75117/27634, 370143/136168, 1602139/589394, 1084483/398959, 14665106/5394991, 99402293/36568060, 353613854/130087267, 848456353/312129649 & 15710565395/5779594018. Regarding the last one, |15710565395/5779594018 - e| < 10^(-19).
The numerators of these rationals are a proper subsequence of A006258 & A119014 and the denominators are a proper subsequence of A006259 & A119015. - _Robert G. Wilson v_, Jun 27 2015
		

Crossrefs

Cf. A227631.

Programs

  • Mathematica
    z = 16; r[x_, y_] := Module[{a, b, x1 = Min[{x, y}], y1 = Max[{x, y}]}, If[x == y, x, b = NestWhile[#1 + 1 &, 1, ! (a = Ceiling[#1 x1 - 1]) < Ceiling[#1 y1] - 1 &]; (a + 1)/b]]; s[n_] := s[n] = Sum[1/(k - 1)!, {k, 1, n}]; N[Table[s[k], {k, 1, z}]]; t = Table[r[s[n], s[n + 1]], {n, 2, z}]; fd = Denominator[t] (* Peter J. C. Moses, Jul 20 2013 *)

Extensions

a(16)-a(17) from Manfred Scheucher, Jun 23 2015
a(18)-a(19) from Robert G. Wilson v, Jun 27 2015
a(20)-a(27) from Jon E. Schoenfield, Jun 27 2015
Showing 1-3 of 3 results.