A006300 Number of rooted maps with n edges on torus.
1, 20, 307, 4280, 56914, 736568, 9370183, 117822512, 1469283166, 18210135416, 224636864830, 2760899996816, 33833099832484, 413610917006000, 5046403030066927, 61468359153954656, 747672504476150374, 9083423595292949240, 110239596847544663002, 1336700736225591436496, 16195256987701502444284
Offset: 2
References
- E. R. Canfield, Calculating the number of rooted maps on a surface, Congr. Numerantium, 76 (1990), 21-34.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. R. S. Walsh, Combinatorial Enumeration of Non-Planar Maps. Ph.D. Dissertation, Univ. of Toronto, 1971.
Links
- T. D. Noe, Table of n, a(n) for n = 2..100
- D. Arquès, Relations fonctionnelles et dénombrement des cartes pointées sur le tore, J. Combin. Theory Ser. B, 43 (1987), 253-274.
- E. A. Bender, E. R. Canfield and R. W. Robinson, The enumeration of maps on the torus and the projective plane, Canad. Math. Bull., 31 (1988), 257-271.
- Sean R. Carrell, Guillaume Chapuy, Simple recurrence formulas to count maps on orientable surfaces, arXiv:1402.6300 [math.CO], (19-March-2014).
- S. R. Finch, An exceptional convolutional recurrence, arXiv:2408.12440 [math.CO], 22 Aug 2024.
- A. D. Mednykh and R. Nedela, Enumeration of unrooted maps with given genus, preprint (submitted to J. Combin. Th. B).
- A. D. Mednykh and R. Nedela, Enumeration of unrooted maps with given genus, Discrete Mathematics, Volume 310, Issue 3, 6 February 2010, pp. 518-526.
- T. R. S. Walsh and A. B. Lehman, Counting rooted maps by genus, J. Comb. Thy B13 (1972), 122-141 and 192-218.
- T. R. S. Walsh, Counting maps on doughnuts, Theoretical Computer Science, vol. 502, pp. 4-15, (September-2013).
Crossrefs
Programs
-
Maple
R:=sqrt(1-12*x): seq(coeff(convert(series((R-1)^2/(12*R^2*(R+2)),x,50),polynom),x,n),n=2..25); (Pab Ter)
-
Mathematica
Drop[With[{c=Sqrt[1-12x]},CoefficientList[Series[(c-1)^2/(12c^2 (c+2)), {x,0,30}],x]],2] (* Harvey P. Dale, Jun 14 2011 *)
-
PARI
A005159_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-12*x))/(6*x); A006300_ser(N) = my(y = A005159_ser(N+1)); y*(y-1)^2/(3*(y-2)^2*(y+2)); Vec(A006300_ser(21)) \\ Gheorghe Coserea, Jun 02 2017
Formula
G.f.: (R-1)^2/(12*R^2*(R+2)) where R=sqrt(1-12*x); a(n) is asymptotic to 12^n/24. - Pab Ter (pabrlos2(AT)yahoo.com), Nov 07 2005
a(n) = Sum_{k=0..n-2} 2^(n-3-k)*(3^(n-1)-3^k)*binomial(n+k,k). - Ruperto Corso, Dec 18 2011
D-finite with recurrence: n*a(n) +22*(-n+1)*a(n-1) +4*(22*n-65)*a(n-2) +96*(5*n-4)*a(n-3) +576*(-2*n+7)*a(n-4)=0. - R. J. Mathar, Feb 20 2020
Extensions
Bender et al. give 20 terms.
More terms from Pab Ter (pabrlos2(AT)yahoo.com), Nov 07 2005
More terms from Joerg Arndt, Feb 26 2014