cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006308 Coefficients of period polynomials.

Original entry on oeis.org

3, 10, 21, 55, 78, 136, 171, 253, 406, 465, 666, 820, 903, 1081, 1378, 1711, 1830, 2211, 2485, 2628, 3081, 3403, 3916, 4656, 5050
Offset: 2

Views

Author

Keywords

Comments

Conjecture: a(n) = A008837(n) = p*(p-1)/2 = Sum_{k=0..p-1} mod(k^3, p) where p = prime(n). - Michael Somos, Feb 17 2020

References

  • D. H. and Emma Lehmer, Cyclotomy for nonsquarefree moduli, pp. 276-300 of Analytic Number Theory (Philadelphia 1980), Lect. Notes Math. 899 (1981).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 243.

Crossrefs

Cf. A008837. [From R. J. Mathar, Oct 28 2008]

Formula

For an odd prime p, let g be a primitive root of p^2, q=g^p, and zeta=exp(2*pi*i/p^2). Define h(p,k) = Sum_{j=0..p-2} zeta^((q+k*p)*q^j) and a polynomial f(p,x) = Product_{k=0..p-1} (x-h(p,k)). Finally, a(n) = -[x^(p-2)] f(p,x) where p = A000040(n) is the n-th prime. - Sean A. Irvine, Mar 07 2017

Extensions

More terms and offset corrected by Sean A. Irvine, Mar 07 2017