A006340 An "eta-sequence": [ (n+1)*tau + 1/2 ] - [ n*tau + 1/2 ], tau = (1 + sqrt(5))/2.
2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1
Offset: 0
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..1000
- Michel Dekking, Substitution invariant Sturmian words and binary trees, arXiv:1705.08607 [math.CO], (2017).
- Michel Dekking, Substitution invariant Sturmian words and binary trees, Integers, Electronic Journal of Combinatorial Number Theory 18A (2018), #A17.
- D. R. Hofstadter, Eta-Lore [Cached copy, with permission]
- D. R. Hofstadter, Pi-Mu Sequences [Cached copy, with permission]
- D. R. Hofstadter and N. J. A. Sloane, Correspondence, 1977 and 1991
- M. Lothaire, Algebraic combinatorics on words, Cambridge University Press. Online publication date: April 2013; Print publication year: 2002.
Programs
-
Mathematica
Differences[ Table[ Round[ GoldenRatio*n], {n, 0, 93}]] (* Jean-François Alcover, Aug 13 2012 *)
-
PARI
rt(n) = my(tau=(1 + sqrt(5))/2); round(tau*n) a(n) = rt(n+1)-rt(n) \\ Felix Fröhlich, Aug 26 2018
Extensions
Extended by N. J. A. Sloane, Nov 07 2001
Comments