cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006402 Number of sensed 2-connected (nonseparable) planar maps with n edges.

Original entry on oeis.org

1, 2, 3, 6, 16, 42, 151, 596, 2605, 12098, 59166, 297684, 1538590, 8109078, 43476751, 236474942, 1302680941, 7256842362, 40832979283, 231838418310, 1327095781740, 7653155567834, 44434752082990, 259600430870176, 1525366978752096, 9010312253993072, 53485145730576790
Offset: 2

Views

Author

Keywords

Comments

Some people begin this 2,1,2,3,6,..., others begin it 0,1,2,3,6,....
The dual of a nonseparable map is nonseparable, so the class of all nonseparable planar maps is self-dual. The maps considered here are unrooted and sensed and may include loops and parallel edges. - Andrew Howroyd, Mar 29 2021

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • T. R. S. Walsh, personal communication.

Crossrefs

Row sums of A342061.
Cf. A000087 (with distinguished faces), A000139 (rooted), A005645, A006403 (unsensed), A006406 (without loops or parallel edges).

Programs

  • PARI
    \\ here r(n) is A000139(n-1).
    r(n)={4*binomial(3*n,n)/(3*(3*n-2)*(3*n-1))}
    a(n)={(r(n) + sumdiv(n, d, if(dAndrew Howroyd, Mar 29 2021

Extensions

Terms a(23) and beyond from Andrew Howroyd, Mar 29 2021